Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 281: 114583, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38750806

RESUMO

The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.


Assuntos
Administração Intranasal , Modelos Animais de Doenças , Fragilidade , Insulina , Camundongos Transgênicos , Força Muscular , Memória Espacial , Animais , Insulina/administração & dosagem , Insulina/farmacologia , Força Muscular/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Feminino , Fragilidade/tratamento farmacológico , Camundongos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Doença de Alzheimer/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transtornos da Memória/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Força da Mão/fisiologia , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
2.
J Cyst Fibros ; 20(5): 881-890, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34034984

RESUMO

Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.


Assuntos
Fibrose Cística/metabolismo , Complicações do Diabetes/etiologia , Complicações do Diabetes/metabolismo , Pâncreas/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Homozigoto , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR
3.
Appl Physiol Nutr Metab ; 46(9): 1097-1104, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33725464

RESUMO

Dairy snacks are available in various physical forms and their consumption is linked to improved metabolic health. The objective of this study was to determine the effect of dairy snacks of different physical forms on short-term food intake (FI), subjective appetite, and the stress hormone, cortisol, in children. Following a repeated-measures crossover design, 40 children aged 9-14 years randomly consumed 1 of 5 isoenergetic (180 kcal) snacks per study session. These snacks included solid (potato chips, cookies, and cheese), semi-solid (Greek yogurt), and fluid (2% fat milk) snacks. FI was measured 120 min after snack consumption. Subjective appetite was measured at 0 (immediately before the snack), 15, 30, 45, 60, 90, and 120 min. Salivary cortisol (n = 18) was measured after the Greek yogurt and cookie snacks at 0, 30, 60, 90, and 120 min. FI did not differ between snacks (P = 0.15). The Greek yogurt (P < 0.0001) and cheese (P = 0.0009) snacks reduced average appetite compared with the 2% fat milk snack. Salivary cortisol levels were not affected by snack (P = 0.84). This study demonstrates that dairy snacks are as effective as other popular snacks at influencing subsequent FI. However, solid and semi-solid dairy snacks are more effective at repressing subjective appetite than a fluid dairy snack. Registered at ClinicalTrials.gov (NCT02484625). Novelty: Milk, Greek yogurt and cheese have a similar effect on short-term food intake in children as popular potato chips and cookie snacks. Solid, semi-solid and liquid snacks have a similar effect on short-term food intake in children.


Assuntos
Apetite/fisiologia , Laticínios , Ingestão de Energia/fisiologia , Hidrocortisona/metabolismo , Lanches/fisiologia , Adolescente , Criança , Estudos Cross-Over , Ingestão de Líquidos/fisiologia , Feminino , Preferências Alimentares/fisiologia , Preferências Alimentares/psicologia , Humanos , Masculino , Sobrepeso/fisiopatologia , Obesidade Infantil/fisiopatologia , Saliva/metabolismo , Saciação
4.
Behav Brain Res ; 406: 113214, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33677013

RESUMO

In addition to cognitive decline, patients with Alzheimer's disease (AD) exhibit sensory, motor, and neuropsychiatric deficits. Many AD patients also show weight loss, suggesting that AD may involve a metabolic syndrome. The 5xFAD mouse model shows age-related weight loss compared to wildtype controls, and thus may exhibit metabolic dysfunction. This longitudinal study measured age-related weight loss in female 5xFAD and B6SJL/JF2 wild-type mice from 3 to 12 months of age, and examines some of the behavioural and physiological phenotypes in these mice that have been proposed to contribute to this weight loss. Because some mice had to be singly housed during the study, we also examined genotype by housing interactions. The 5xFAD mice weighed less and ate less than WT littermates starting at 6 months of age, exhibited less home cage activity, had higher frailty scores, less white adipose tissue, and lower leptin expression. At 9 and 12 months of age, heavier 5xFAD mice performed better on the rotarod, suggesting that metabolic deficits which begin between 6 and 9 months of age may exacerbate the behavioural deficits in 5xFAD mice. These results indicate that the 5xFAD mouse is a useful model to study the behavioural and metabolic changes in AD.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Comportamento Animal/fisiologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Redução de Peso
5.
Nat Commun ; 12(1): 110, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397977

RESUMO

Glucagon-Like Peptide-1 (GLP-1) undergoes rapid inactivation by dipeptidyl peptidase-4 (DPP4) suggesting that target receptors may be activated by locally produced GLP-1. Here we describe GLP-1 positive cells in the rat and human stomach and found these cells co-expressing ghrelin or somatostatin and able to secrete active GLP-1 in the rats. In lean rats, a gastric load of glucose induces a rapid and parallel rise in GLP-1 levels in both the gastric and the portal veins. This rise in portal GLP-1 levels was abrogated in HFD obese rats but restored after vertical sleeve gastrectomy (VSG) surgery. Finally, obese rats and individuals operated on Roux-en-Y gastric bypass and SG display a new gastric mucosa phenotype with hyperplasia of the mucus neck cells concomitant with increased density of GLP-1 positive cells. This report brings to light the contribution of gastric GLP-1 expressing cells that undergo plasticity changes after bariatric surgeries, to circulating GLP-1 levels.


Assuntos
Cirurgia Bariátrica , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Adulto , Sequência de Aminoácidos , Animais , Dieta Hiperlipídica , Feminino , Peptídeo 1 Semelhante ao Glucagon/química , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/patologia , Fenótipo , Ratos Wistar
6.
J Cyst Fibros ; 20(1): 154-164, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32600901

RESUMO

Vasoactive Intestinal Peptide (VIP) is the major physiological agonist of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channel activity. VIP functions as a neuromodulator and neurotransmitter secreted by neurons innervating all exocrine glands. VIP is also a potent vasodilator and bronchodilator that regulates exocrine gland secretions, contributing to local innate defense by stimulating the movement of water and chloride transport across intestinal and tracheobronchial epithelia. Previous human studies have shown that the rich intrinsic neuronal networks for VIP secretion around exocrine glands could be lost in tissues from patients with cystic fibrosis. Our research has since confirmed, in vitro and in vivo, the need for chronic VIP exposure to maintain functional CFTR chloride channels at the cell surface of airways and intestinal epithelium, as well as normal exocrine tissues morphology [1]. The goal of the present study was to examine changes in VIP in the lung, duodenum and sweat glands of 8- and 17-weeks old F508del/F508del mice and to investigate VIPergic innervation in the small intestine of CF mice, before important signs of the disease development. Our data show that a low amount of VIP is found in CF tissues prior to tissue damage. Moreover, we found a specific reduction in VIPergic and cholinergic innervation of the small intestine. The general innervation of the primary and secondary myenteric plexus was lost in CF tissues, with the presence of enlarged ganglionic cells in the tertiary layer. We propose that low amount of VIP in CF tissues is due to a reduction in VIPergic and cholinergic innervation and represents an early defect that constitutes an aggravating factor for CF disease progression.


Assuntos
Fibrose Cística/metabolismo , Duodeno/inervação , Duodeno/metabolismo , Pulmão/inervação , Pulmão/metabolismo , Glândulas Sudoríparas/inervação , Glândulas Sudoríparas/metabolismo , Peptídeo Intestinal Vasoativo/biossíntese , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Appl Physiol Nutr Metab ; 45(10): 1118-1126, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32294394

RESUMO

Breakfast cereals are often consumed with dairy products or nondairy alternatives; however, the effect of the combination on blood glucose and food intake control is not well investigated. In a randomized, crossover study, 24 healthy women (age: 22.7 ± 2.5 years; body mass index: 22.1 ± 1.5 kg/m2) consumed, to satiation, 1 of 3 treatments: Greek yogurt with granola (150 kcal, 9.2 g protein, 2.6 g fat, 2.0 g dietary fibre, and 21.5 g available carbohydrate/100 g); cultured coconut product with granola (146 kcal, 3.2 g protein, 3.2 g fat, 5.6 g dietary fibre, and 21.9 g available carbohydrate/100 g); or water control. The data were analyzed with repeated-measures ANOVA. The 2 h blood glucose iAUC was 52% lower after the dairy compared with nondairy treatment (P < 0.0001). While there were no differences in food intake between the caloric treatments consumed to satiation, protein intake was 3 times higher and fibre intake was 4 times lower after the dairy compared with nondairy treatment. Both caloric treatments resulted in similar suppression of ad libitum food intake at 2 h (P < 0.003) and subjective appetite over 2 h (P < 0.0001) compared with water. The cumulative food intake over 2 h was lower after water (P < 0.05). The 1.8-fold increase in postprandial insulin after dairy compared with nondairy treatment may explain the reduction in blood glucose without an increase in subsequent energy intake. Novelty Blood glucose in young females is lower after a breakfast with granola in a high-protein cultured dairy than when in a high-fibre nondairy cultured product. Subjective appetite over 2 h and food intake 2 h later was similarly lower after both breakfasts but cumulative intake was higher compared with breakfast skipping.


Assuntos
Glicemia/metabolismo , Desjejum/fisiologia , Grão Comestível/metabolismo , Ingestão de Energia/fisiologia , Saciação/fisiologia , Iogurte , Adulto , Estudos Cross-Over , Feminino , Controle Glicêmico , Humanos , Período Pós-Prandial , Resposta de Saciedade , Adulto Jovem
8.
Appl Physiol Nutr Metab ; 44(10): 1073-1080, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30794429

RESUMO

In adults, dairy consumption improves short-term blood glucose regulation. It is unknown if these short-term benefits extend to children of different weight statuses. The objective of this study was to investigate the effect of a dairy and nondairy snack in both normal-weight (NW) and overweight/obese (OW/OB) children on blood glucose regulation and food intake (FI). In a repeated-measures crossover design, 11 NW and 7 OW/OB children (age: 9-14 years), consumed, in random order, a dairy (Greek yogurt, 198.9 g, 171 kcal, 0 g fat, 17 g protein) or nondairy (mini sandwich-type cookies, 37.5 g, 175 kcal, 7.5 g fat, 1.3 g protein) snack containing 25 g of available carbohydrates. Ad libitum FI was measured 120 min after snack consumption. Blood glucose, insulin, C-peptide, and glucagon-like peptide-1 (GLP-1) were measured at 0 min (before the snack), and at 30, 60, 90, and 120 min after snack consumption. Insulin secretion was calculated from deconvolution of C-peptide. Hepatic insulin extraction was calculated as C-peptide divided by insulin. FI did not differ between snacks (P = 0.55). Mean blood glucose was lower (P < 0.001) and insulin higher (P < 0.0001) in the 120 min after consuming the dairy snack. C-Peptide concentrations (P = 0.75) and insulin secretion (P = 0.37) were not different between snacks. The increase in insulin was explained by reduced hepatic insulin extraction (P < 0.01). Consumption of the dairy snack also increased mean GLP-1 concentrations (P < 0.001). In conclusion, consumption of a dairy snack by NW and OW/OB children results in reduced postprandial blood glucose concentrations and elevated circulating insulin compared with a nondairy snack possibly because of delayed hepatic insulin extraction.


Assuntos
Glicemia/análise , Laticínios , Período Pós-Prandial , Lanches , Adolescente , Apetite , Peptídeo C/sangue , Criança , Estudos Cross-Over , Feminino , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Insulina/sangue , Insulina/metabolismo , Fígado/metabolismo , Masculino , Obesidade/sangue , Sobrepeso/sangue
9.
Amino Acids ; 51(3): 395-405, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30430332

RESUMO

Apelin is a peptide hormone that binds to a class A GPCR (the apelin receptor/APJ) to regulate various bodily systems. Upon signal peptide removal, the resulting 55-residue isoform, proapelin/apelin-55, can be further processed to 36-, 17-, or 13-residue isoforms with length-dependent pharmacological properties. Processing was initially proposed to occur intracellularly. However, detection of apelin-55 in extracellular fluids indicates that extracellular processing may also occur. To test for this, apelin-55 was applied exogenously to HEK293A cells overexpressing proprotein convertase subtilisin kexin 3 (PCSK3), the only apelin processing enzyme identified thus far, and to differentiated 3T3-L1 adipocytes, which endogenously express apelin, PCSK3 and other proprotein convertases. Analysis of culture media constituents from each cell type by high performance liquid chromatography-mass spectrometry and western blot demonstrated a time-dependent decrease in apelin-55 levels. This decrease was partially, but not fully, attenuated by PCSK inhibitor treatment in both cell lines. Comparison of the resulting apelin-55-derived peptide profile between the two cell lines demonstrated distinct processing patterns, with apelin-36 production apparent in 3T3-L1 adipocytes vs. detection of the prodomain of a shorter isoform (likely the apelin-13 prodomain, observed after additional proteolytic processing) in PCSK3-transfected HEK293A cells. Extracellular processing of apelin, with distinct cell type dependence, provides an alternative mechanism to regulate isoform-mediated physiological effects of apelin.


Assuntos
Adipócitos/metabolismo , Apelina/metabolismo , Espaço Extracelular/metabolismo , Pró-Proteína Convertases/metabolismo , Precursores de Proteínas/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Células HEK293 , Humanos , Camundongos , Processamento de Proteína Pós-Traducional
10.
Horm Mol Biol Clin Investig ; 26(1): 3-11, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235674

RESUMO

Ghrelin is a 28-amino acid (aa) stomach-derived peptide discovered in 1999 as the endogenous ligand for growth hormone secretagogue-receptor (GHS-R). Ghrelin-producing cells constitute a distinct group of endocrine cells dispersed throughout the gastric mucosa and to a lesser extent in the small intestine and the endocrine pancreas. Ghrelin plasma levels rise during fasting and chronic caloric restriction to stimulate food intake and fat storage and to prevent life-threatening falls in blood glucose. Plasma ghrelin levels decrease after a meal is consumed and in conditions of energy surplus (such as obesity). Ghrelin has emerged as a key player in the regulation of appetite and energy homeostasis. Ghrelin achieves these functions through binding the ghrelin receptor GHS-R in appetite-regulating neurons and in peripheral metabolic organs including the endocrine pancreas. Ghrelin levels are negatively correlated with body mass index (BMI) and insulin resistance. In addition, ghrelin secretion is impaired in obesity and insulin resistance. Several studies highlight an important role for ghrelin in glucose homeostasis. Genetic, immunological, and pharmacological blockade of ghrelin signaling resulted in improved glucose tolerance and insulin sensitivity. Furthermore, exogenous ghrelin administration was shown to decrease glucose-induced insulin release and increase glucose level in both humans and rodents. GHS-R was shown to be expressed in pancreatic ß-cells and ghrelin suppressed insulin release via a Ca2+-mediated pathway. In this review, we provide a detailed summary of recent advances in the field that focuses on the role of insulin and insulin resistance in the regulation of ghrelin secretion and on the role of ghrelin in glucose-stimulated insulin secretion (GSIS).


Assuntos
Glicemia/metabolismo , Grelina/metabolismo , Homeostase , Animais , Grelina/química , Grelina/genética , Humanos , Insulina/metabolismo , Transdução de Sinais
11.
Am J Physiol Cell Physiol ; 307(2): C195-207, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24898584

RESUMO

Vasoactive intestinal peptide (VIP), a neuropeptide, controls multiple functions in exocrine tissues, including inflammation, and relaxation of airway and vascular smooth muscles, and regulates CFTR-dependent secretion, which contributes to mucus hydration and local innate defense of the lung. We had previously reported that VIP stimulates the VPAC1 receptor, PKCϵ signaling cascade, and increases CFTR stability and function at the apical membrane of airway epithelial cells by reducing its internalization rate. Moreover, prolonged VIP stimulation corrects the molecular defects associated with F508del, the most common CFTR mutation responsible for the genetic disease cystic fibrosis. In the present study, we have examined the impact of the absence of VIP on CFTR maturation, cellular localization, and function in vivo using VIP knockout mice. We have conducted pathological assessments and detected signs of lung and intestinal disease. Immunodetection methods have shown that the absence of VIP results in CFTR intracellular retention despite normal expression and maturation levels. A subsequent loss of CFTR-dependent chloride current was measured in functional assays with Ussing chamber analysis of the small intestine ex vivo, creating a cystic fibrosis-like condition. Interestingly, intraperitoneal administration of VIP corrected tissue abnormalities, close to the wild-type phenotype, as well as associated defects in the vital CFTR protein. The results show in vivo a primary role for VIP chronic exposure in CFTR membrane stability and function and confirm in vitro data.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica/fisiologia , Intestino Delgado/patologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Mucosa Respiratória/citologia , Traqueia/citologia , Peptídeo Intestinal Vasoativo/genética
12.
Am J Physiol Cell Physiol ; 307(1): C107-19, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24788249

RESUMO

Vasoactive intestinal peptide (VIP) is a topical airway gland secretagogue regulating fluid secretions, primarily by stimulating cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride secretion that contributes to the airways innate defense mechanism. We previously reported that prolonged VIP stimulation of pituitary adenylate cyclase-activating peptide receptors (VPAC1) in airway cells enhances CFTR function by increasing its membrane stability. In the present study, we identified the key effectors in the VIP signaling cascade in the human bronchial serous cell line Calu-3. Using immunocytochemistry and in situ proximity ligation assays, we found that VIP stimulation increased CFTR membrane localization by promoting its colocalization and interaction with the scaffolding protein Na(+)/H(+) exchange factor 1 (NHERF1), a PDZ protein known as a positive regulator for CFTR membrane localization. VIP stimulation also increased phosphorylation, by protein kinase Cε of the actin-binding protein complex ezrin/radixin/moesin (ERM) and its interaction with NHERF1 and CFTR complex. On the other hand, it reduced intracellular CFTR colocalization and interaction with CFTR associated ligand, another PDZ protein known to compete with NHERF1 for CFTR interaction, inducing cytoplasmic retention and lysosomal degradation. Reducing NHERF1 or ERM expression levels by specific siRNAs prevented the VIP effect on CFTR membrane stability. Furthermore, iodide efflux assays confirmed that NHERF1 and P-ERM are necessary for VIP regulation of the stability and sustained activity of membrane CFTR. This study shows the cellular mechanism by which prolonged VIP stimulation of airway epithelial cells regulates CFTR-dependent secretions.


Assuntos
Brônquios/enzimologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/enzimologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C-épsilon/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Brônquios/citologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas da Matriz do Complexo de Golgi , Humanos , Proteínas de Membrana Transportadoras , Fosfoproteínas/genética , Fosforilação , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/genética , Fatores de Tempo , Transfecção
13.
FEBS Open Bio ; 3: 328-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24251091

RESUMO

The peptide hormone apelin is translated as a 77-residue preproprotein, truncated to the 55-residue proapelin and, subsequently, to 13-36-residue bioactive isoforms named apelin-13 to -36. Proapelin is hypothesized to be cleaved to apelin-36 and then to the shorter isoforms. However, neither the mechanism of proapelin processing nor the endoproteases involved have been determined. We show direct cleavage of proapelin to apelin-13 by proprotein convertase subtilisin/kexin 3 (PCSK3, or furin) in vitro, with no production of longer isoforms. Conversely, neither PCSK1 nor PCSK7 has appreciable proapelin cleavage activity. Furthermore, we show that both proapelin and PCSK3 transcript expression levels are increased in adipose tissue with obesity and during adipogenesis, suggesting that PCSK3 is responsible for proapelin processing in adipose tissue.

14.
Endocrinology ; 154(2): 666-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23307791

RESUMO

Ghrelin is a stomach-derived orexigenic hormone whose levels in circulation are altered by energy availability. Like ghrelin, the glucotropic hormone glucagon increases in the fasting state and serves to normalize energy levels. We hypothesized that glucagon can directly stimulate stomach ghrelin production. To verify this hypothesis, we used a primary culture of dispersed rat stomach cells. We first demonstrated that stomach ghrelin cells express the glucagon receptor (GluR). Glucagon (1-100 nM) significantly stimulated ghrelin secretion and proghrelin mRNA expression, and co-incubation with a GluR inhibitor prevented glucagon's action. The MAP kinase inhibitor (PD98058) reduced the glucagon-stimulated ghrelin secretion and proghrelin mRNA expression. Furthermore, glucagon treatment increased the phosphorylation of ERK1/2. Glucagon also increased intracellular cAMP levels, and inhibition of adenylate cyclase reduced glucagon's effect on ghrelin secretion. Surprisingly, inhibiting protein kinase A (PKA) (using H89 and phosphorothioate [Rp]-cAMP) did not prevent glucagon-stimulated ghrelin secretion. Instead, inhibiting the exchange protein activated by cAMP (EPAC) with Brefeldin-A was able to significantly reduce glucagon-stimulated ghrelin secretion. Furthermore, the EPAC agonist (8-pCPT) significantly stimulated ghrelin secretion. Depleting endoplasmic reticulum calcium stores or blocking voltage-dependant calcium channels prevented glucagon stimulated ghrelin secretion. Finally, co-incubation with the sympathetic neurotransmitter norepinephrine potentiated the glucagon stimulation of ghrelin secretion. Our findings are the first to show a direct link between glucagon and stomach ghrelin production and secretion and highlight the role of MAPK, the PKA-independent EPAC pathway, and the synergy between norepinephrine and glucagon in ghrelin release.


Assuntos
Grelina/metabolismo , Glucagon/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Norepinefrina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Cálcio/metabolismo , Caproatos/farmacologia , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sinergismo Farmacológico , Feminino , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , RNA Mensageiro/metabolismo , Ratos , Receptores de Glucagon/biossíntese , Estômago/citologia , Estômago/efeitos dos fármacos
15.
Endocrinology ; 153(8): 3646-56, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22691550

RESUMO

Ghrelin is a peptide hormone primarily produced in the previously unidentified X/A endocrine cells of the stomach. Extensive studies have focused on the effects of ghrelin on growth hormone release and appetite regulation. However, the mechanisms regulating ghrelin secretion are less understood. In the present study, we developed a primary culture of newborn rat stomach cells to investigate the mechanisms regulating ghrelin synthesis and secretion. We demonstrated that this cell preparation secretes ghrelin in a regulated manner through the increase of cAMP, intracellular calcium, and activation of protein kinase C. Norepinephrine (NE) (0.1-10 µm) stimulated ghrelin secretion through the ß1-adrenergic receptor via increased cAMP and protein kinase A activity, whereas acetylcholine had no effect. Because circulating ghrelin levels were previously shown to be inversely correlated with insulin levels, we investigated the effect of insulin on ghrelin secretion. We first demonstrated that ghrelin cells express the insulin receptor α- and ß-subunits. Next, we determined that insulin (1-10 nm) inhibited both basal and NE-stimulated ghrelin secretion, caused an increase in phosphorylated serine-threonine kinase (AKT) and a reduction in intracellular cAMP, but did not alter proghrelin mRNA levels. The inhibitory effect of insulin was blocked by inhibiting phospho-inositol-3 kinase and AKT but not MAPK. Higher dose insulin (100 nm) did not suppress ghrelin secretion, which prompted the investigation of cellular insulin resistance by pretreating the cells with 100 nm insulin for 24 h. This caused a reduction in insulin receptor expression and prevented the insulin-mediated AKT activation and the suppression of ghrelin secretion with no impact on NE-stimulated ghrelin secretion. Our findings highlight the role of the sympathetic nervous system, insulin, and insulin resistance in the regulation of ghrelin secretion.


Assuntos
Mucosa Gástrica/metabolismo , Grelina/metabolismo , Insulina/farmacologia , Norepinefrina/farmacologia , Estômago/citologia , Animais , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Receptor de Insulina/metabolismo , Receptores Adrenérgicos/metabolismo
16.
Methods Mol Biol ; 768: 257-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21805248

RESUMO

Proprotein convertases (PCs) are secretory proteolytic enzymes that activate precursor proteins into biologically active forms by limited proteolysis at one or multiple internal sites. PCs are implicated in the processing of multiple protein precursors, including hormones, proteases, growth factors, angiogenic factors, and receptors. PCs have been linked recently to various pathologies such as Alzheimer's disease, tumorigenesis, and infections. The zebrafish has emerged as an attractive model for studying the role of PCs not only in substrate production but also in development. Herein we describe methods that are used to characterize DNA sequences of PCs in zebrafish, as well as to evaluate the ontogeny and tissue distribution of their transcripts. We also provide information on the morpholino-mediated knockdown of proprotein convertases.


Assuntos
Pró-Proteína Convertases , Precursores de Proteínas , Análise de Sequência de DNA/métodos , Proteínas de Peixe-Zebra , Doença de Alzheimer/enzimologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes/métodos , Humanos , Infecções/enzimologia , Morfogênese , Neoplasias/enzimologia , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/química , Distribuição Tecidual , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Regul Pept ; 163(1-3): 62-73, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20362013

RESUMO

Ghrelin is a 28 amino acid peptide hormone derived from the 117 amino acid proghrelin, following cleavage by proprotein convertase 1 (PC1). In this study, we comprehensively assessed the tissue distribution and the effect of fasting and obesity on preproghrelin, Exon-4D, PC1 and GOAT expression and proghrelin-derived peptide (PGDP) secretion. The stomach was the major source of preproghrelin expression and PDGPs, followed by the small intestine. The remaining peripheral tissues (including the brain and pancreas) contained negligible expression levels. We detected obestatin in all stomach proghrelin cells, however, 22% of proghrelin cells in the small intestine did not express obestatin. There were strain differences in ghrelin secretion in response to fasting between CD1 and C57BL/6 mice. After a 24 hour-fast, CD1 mice had increased plasma levels of total ghrelin and obestatin with no change in preproghrelin mRNA or PGDP tissues levels. C57BL/6 mice showed a different response to a 24 hour-fast having increased proghrelin mRNA expression, stomach acylated ghrelin peptide and no change in plasma obestatin in C57BL/6 mice. In obese mice (ob/ob and diet-induced obesity (DIO)) there was a significant increase in preproghrelin mRNA levels while tissue and plasma PGDP levels were significantly reduced. Fasting did not affect PGDP in obese mice. Obese models displayed differences in GOAT expression, which was elevated in DIO mice, but reduced in ob/ob mice. We did not find co-localization of the leptin receptor in ghrelin expressing stomach cells, ruling out a direct effect of leptin on stomach ghrelin synthesis and secretion.


Assuntos
Jejum/fisiologia , Mucosa Gástrica/metabolismo , Grelina/metabolismo , Intestino Delgado/metabolismo , Obesidade/metabolismo , Animais , Grelina/análise , Grelina/química , Grelina/genética , Intestino Delgado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Especificidade de Órgãos , RNA Mensageiro/genética , Estômago/química
18.
Gen Comp Endocrinol ; 162(2): 179-87, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19332069

RESUMO

Prohormone convertase subtilisin/kexin (PCSK) enzymes are a family of nine related serine proteases, found in a multitude of tissues, and responsible for the maturation of a variety of protein and peptide precursors. Pcsk1 and Pcsk2 are found within dense core secretory granules in endocrine and neuroendocrine cells and are responsible for cleaving several hormones and neuropeptide precursors. In this work, we cloned and sequenced the cDNA of pcsk1 and pcsk2 from zebrafish (Danio rerio). pcsk1 is a 2268bp ORF, whose 755 amino acid protein product is identical to that predicted from the genome sequence. pcsk2 is a 1941bp ORF, encoding a 646 amino acid peptide. Both Pcsk1 and Pcsk2 display high degrees of similarity to their counterparts in other species, including the conservation of the catalytic triad and other essential residues. The brain contained the highest expression levels of both pcsk1 (1.49+/-0.21) (displayed as ratio to EF-1a), and pcsk2 (0.23+/-0.04). Both transcripts were also detectable in the fore, mid and distal gut. pcsk1 and 2 were detectable at 4.5h post-fertilization, and while pcsk1 expression increased throughout development (0.12+/-0.01 maximum at 3 days post-fertilization), pcsk2 expression was highest at day 5 post-fertilization (0.03+/-0.01), and decreased prior. For the first time, we have identified and characterized a pcsk1 transcript in fish. We have also identified and characterized the pcsk2 transcript in zebrafish, and have assessed the tissue distribution and ontogeny of both.


Assuntos
Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 2/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Embrião não Mamífero/metabolismo , Dados de Sequência Molecular , Filogenia , Pró-Proteína Convertase 1/química , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 2/química , Pró-Proteína Convertase 2/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
19.
Dev Biol ; 306(2): 584-98, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17490633

RESUMO

Proprotein convertase 1 (PC1) is a neuroendocrine proteinase involved in the proteolytic activation of precursors to hormones and neuropeptides. To determine the physiological importance of PC1, we produced a mutant mouse from embryonic stem cells in which its locus (Pcsk1) had been inactivated by homologous recombination. The inactivating mutation consisted of a 32.7-kb internal deletion and a 1.8 kb insertion of the bacterial neomycin resistance gene (neo) under the mouse phosphoglycerate kinase 1 protein (PGKneo). Intercross of Pcsk1(+/-) mice produced no Pcsk1(-/-) offspring or blastocysts; in addition, more than 80% of the offspring were Pcsk1(+/-). These observations suggested that the mutation caused preimplantation lethality of homozygous embryos and preferential transmission of the mutant allele. Interestingly, RT-PCR analysis on RNA from endocrine tissues from Pcsk1(+/-) mice revealed the presence of aberrant transcripts specifying the N-terminal half of the PC1 propeptide fused to neo gene product. Mass spectrometric profiles of proopiomelanocortin-derived peptides in the anterior pituitary were similar between Pcsk1(+/-) and Pcsk1(+/+) mice, but significantly different between male and female mice of the same genotype. Relative to their wild-type counterparts, female mutant mice exhibited stunted growth under a low fat diet, and catch-up growth under a high-fat diet. The complex phenotype exhibited by this Pcsk1 mutant mouse model may be due to PC1 deficiency aggravated by expression of aberrant gene products from the mutant allele.


Assuntos
Gorduras na Dieta , Deleção de Genes , Heterozigoto , Homozigoto , Mutação , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 1/fisiologia , Alelos , Animais , Blastocisto , Feminino , Predisposição Genética para Doença , Masculino , Camundongos , Camundongos Transgênicos
20.
Am J Physiol Endocrinol Metab ; 292(6): E1599-606, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17284578

RESUMO

Glucagon-like peptide-2 (GLP-2) enhances intestinal growth and function through a cAMP-linked G protein-coupled receptor (GPCR) expressed in the mucosal layer and enteric nervous system. Because the type 1B gamma-isoform of phosphatidylinositol 3-kinase (PI3-K) is activated by GPCRs, we determined whether this enzyme plays a role in the intestinal actions of GLP-2 by using PI3-Kgamma knockout (KO) mice. Wild-type (WT), heterozygous, and KO mice were treated with vehicle or 1 microg Gly2-GLP-2 (a long-acting analog) twice daily for 10 days and analyzed for changes in intestinal growth, motility, and cAMP production. Basal small intestinal wet weight was increased in KO mice in association with enhanced crypt-villus height and crypt cell proliferation (P < 0.05-0.01). However, the GLP-2-induced changes in these parameters were not different between KO and WT animals. GLP-2 treatment also enhanced the number of mucous cells in the intestinal epithelium, but this effect was lost in the PI3-Kgamma KO mice. Both basal and GLP-2-induced suppression of intestinal transit were normal in KO mice. In contrast, the ability of GLP-2 to stimulate cAMP levels in isolated muscle strips was abrogated by loss of PI3-Kgamma, despite the expression of GLP-2 receptor mRNA transcripts in this tissue. Together, the results of this study demonstrate a role for PI3-Kgamma in basal but not GLP-2-induced small intestinal mucosal growth. However, PI3-Kgamma is important for the enhancement of mucous cell number by GLP-2 and in the ability of the GLP-2 receptor to couple to cAMP in the enteric nervous system.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/fisiologia , Intestino Delgado/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/biossíntese , Motilidade Gastrointestinal/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 2 , Mucosa Intestinal/citologia , Intestino Delgado/anatomia & histologia , Intestino Delgado/citologia , Intestino Delgado/crescimento & desenvolvimento , Isoenzimas/fisiologia , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Peptídeos/farmacologia , RNA Mensageiro/metabolismo , Receptores de Glucagon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...