Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371640

RESUMO

Cancer resistance is a primary concern in cancer treatment, and developing an effective modality or strategy to improve therapeutic outcomes is imperative. Photodynamic therapy (PDT) is a treatment modality that targets the tumor with a photoactive molecule and light for the specific destruction of cancer cells. Photobiomodulation (PBM) is a light exposure of cells to energize their biomolecules to respond to therapy. In the present study, we used PBM to mediate and improve the anti-tumor efficacy of zinc phthalocyanine tetrasulfonic acid (ZnPcS4)-PDT on resistant MCF-7 breast cancer cells and explore molecular changes associated with cell death. Different laser irradiation models were used for PBM and PDT combination. The combined treatment demonstrated an additive effect on the viability and Annexin-V/PI-staining cell death assessed through MTT assay and mitochondrial release of cytochrome c. Rhodamine (Rh123) showed increased affinity to mitochondrial disruption of the strategic treatment with PBM and PDT. Results from the autophagy assay indicate an interplay between the mitochondrial and autophagic proteins. These findings were indicative that PBM might improve the anti-tumor of PDT by inducing autophagy in resistant MCF-7 breast cancer cells that evade apoptosis.

2.
Plants (Basel) ; 11(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365273

RESUMO

Punica granatum (P. granatum) is a fruit-bearing tree from the Punicaceae family, indigenous to Iran. This plant has healing qualities that have drawn the interest of the medical community as an alternative treatment for malignancies and non-malignancies. Its healing quality is due to the phytochemicals present in the plant. These include ellagic acid, punicic acid, phenols, and flavonoids. In traditional medicine, P. granatum has been used in treating diseases such as dysentery, bleeding disorders, leprosy, and burns. This review explores the effects of the phytochemical constituents of P. granatum on photodynamic therapy for cancer, chronic inflammation, osteoarthritis, and viral infections. Its antioxidant and antitumor effects play a role in reduced free radical damage and cancer cell proliferation. It was concluded that P. granatum has been used for many disease conditions for a better therapeutic outcome. This paper will give visibility to more studies and expand the knowledge on the potential use of P. granatum in photodynamic cancer treatment.

3.
Front Pharmacol ; 13: 964141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188530

RESUMO

Breast cancer mainly affects women and causes a severe global threat to health. It is often managed and treated with surgery, chemotherapy, immunotherapy, and radiation therapy. Generally, chemotherapy as a treatment option is often opposed by responsive tumor relapse and development of resistance, a significant setback of current treatment. Photodynamic therapy (PDT) offers a promising modality that can treat cancer by combining a photosensitizer and laser irradiation in the presence of oxygen. However, one problem of PDT in treating breast cancer is the apparition of the resistant cell population. Thus, we aimed for stepwise selection and characterization of MCF-7 cells resistant to PDT with a sulfonated zinc phthalocyanine (ZnPcS4) photosensitizer. The wild-type MCF-7 was exposed to successive cycles of ZnPcS4-PDT, and 10resistant populations were finally obtained. In wild-type and parental cells, we analyzed the cell morphology (light microscopy), cell cycle (BrdU staining), cell viability (MTT assay), antioxidant activity (superoxide dismutase measurement), and immunofluorescence expression of resistant p-glycoprotein (P-gp). The results indicate that resistant cells showed a mesenchymal cell phenotype, few differences in antioxidant activity, an increased DNA synthesis, and more expression of P-gp than the wild-type parental cells. These distinctive features of resistant cells can provide insight into the emergence of MCF-7 cell resistance to PDT, which was necessary to design the best therapeutic procedure for improved efficacy.

4.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947979

RESUMO

Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light and molecular oxygen leads to selective cell killing. However, one major setback, common among other treatment approaches, is tumor relapse and the development of resistance causing treatment failure. PDT-mediated resistance could result from increased drug efflux and decreased localization of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival genes. This review highlights the essential insights of PDT reports in which PDT resistance was observed and which identified some of the molecular effectors that facilitate the development of PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be overturned to design improved cancer resistant treatments.


Assuntos
Redes Reguladoras de Genes , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Autofagia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Estresse Oxidativo
5.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885994

RESUMO

Multidrug resistance (MDR) has posed a significant threat to cancer treatment and has led to the emergence of a new therapeutic regime of photodynamic therapy (PDT) to curb the menace. The PDT modality employs a photosensitiser (PS), excited at a specific wavelength of light to kill cancer cells. In the present study, we used a zinc phthalocyanine tetrasulfonic acid PS to mediate the photodynamic killing of MCF-7 cells overexpressed with P-glycoprotein (P-gp) and investigate the response to cell death induction. After photodynamic treatment, MCF-7 cells undergo cell death, and indicators like Annexin V/PI staining, DNA fragmentation, and measurement of apoptotic protein expression were investigated. Results showed increased externalisation of phosphatidylserine protein, measured as a percentage in flow cytometry indicative of apoptotic induction. This expression was significant (p < 0.006) for the untreated control cells, and there was no detection of DNA fragments after a laser fluence of 20 J/cm2. In addition, a statistically significant difference (p < 0.05) was seen in caspase 8 activity and Bax protein expression. These findings were indicative of apoptotic induction and thus seem to represent the extrinsic apoptotic pathway. This study shows the role of PDT in the treatment of a resistant phenotype breast cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Fotoquimioterapia/métodos , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/patologia , Caspase 8/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Indóis/farmacologia , Células MCF-7 , Compostos Organometálicos/farmacologia , Fosfatidilserinas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203053

RESUMO

Photodynamic therapy (PDT) is a treatment modality that involves three components: combination of a photosensitizer, light and molecular oxygen that leads to localized formation of reactive oxygen species (ROS). The ROS generated from this promising therapeutic modality can be lethal to the cell and leads to consequential destruction of tumor cells. However, sometimes the ROS trigger a stress response survival mechanism that helps the cells to cope with PDT-induced damage, resulting in resistance to the treatment. One preferred mechanism of cell death induced by PDT is apoptosis, and B-cell lymphoma 2 (Bcl-2) family proteins have been described as a major determinant of life or death decision of the death pathways. Apoptosis is a cellular self-destruction mechanism to remove old cells through the biological event of tissue homeostasis. The Bcl-2 family proteins act as a critical mediator of a life-death decision of cells in maintaining tissue homeostasis. There are several reports that show cancer cells developing resistance due to the increased interaction of the pro-survival Bcl-2 family proteins. However, the key mechanisms leading to apoptosis evasion and drug resistance have not been adequately understood. Therefore, it is critical to understand the mechanisms of PDT resistance, as well as the Bcl-2 family proteins, to give more insight into the treatment outcomes. In this review, we describe the role of Bcl-2 gene family proteins' interaction in response to disease progression and PDT-induced resistance mechanisms.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Neoplasias/metabolismo , Neoplasias/terapia , Fármacos Fotossensibilizantes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Autofagia , Sobrevivência Celular , Progressão da Doença , Homeostase , Humanos , Luz , Mitocôndrias/metabolismo , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
7.
Cancer Cell Int ; 19: 91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007609

RESUMO

Breast cancer heterogeneity allows cells with different phenotypes to co-exist, contributing to treatment failure and development of drug resistance. In addition, abnormal signal transduction and dysfunctional DNA repair genes are common features with breast cancer resistance. Chemo-resistance of breast cancer associated with multidrug resistance events utilizes ATP-binding cassette (ABC) efflux transporters to decrease drug intracellular concentration. Photodynamic therapy (PDT) is the treatment that involves a combination of a photosensitizer (PS), light and molecular oxygen to induce cell death. This treatment modality has been considered as a possible approach in combatting multidrug resistance phenomenon although its therapeutic potential towards chemo-resistance is still unclear. Attempts to minimize the impact of efflux transporters on drug resistance suggested concurrent use of chemotherapy agents, nanotechnology, endolysosomal release of drug by photochemical internalization and the use of structurally related compound inhibitors to block the transport function of the multidrug resistant transporters. In this review, we briefly summarize the role of membrane ABC efflux transporters in therapeutic outcomes and highlight research findings related to PDT and its applications on breast cancer with multidrug resistance phenotype. With the development of an ideal PS for photodynamic cancer treatment, it is possible that light activation may be used not only to sensitize the tumour but also to enable release of PS into the cytosol and as such bypass efflux membrane proteins and inhibit escape pathways that may lead to resistance.

8.
Tumour Biol ; 39(10): 1010428317727278, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29022483

RESUMO

Doxorubicin is a broad-spectrum antibiotic and anticancer drug used to treat a variety of human malignancies like breast cancer and leukaemia. Unfortunately, a dose-dependent side effect of this drug is common, representing a major obstacle to its use despite its therapeutic efficacy. Photodynamic therapy is an emerging non-invasive potential adjuvant for conventional cancer treatment. In an attempt to circumvent the dose-limiting effect of doxorubicin, this study aimed to investigate cellular anticancer activity of doxorubicin and sulfonated zinc phthalocyanine-mediated photodynamic therapy on MCF-7 cells alone and in combination. Furthermore, we investigated the cell death pathway resulting from the combination treatment. MCF-7 cells were incubated with 0.5 µM concentration of doxorubicin for 20 h, afterwards, various concentrations of sulfonated zinc phthalocyanine were added and incubated for 4 h. Cells were irradiated using a 681.5 nm diode laser at 4.53 mW/cm2 for 18 min 24 s (5 J/cm2). Cell viability and proliferation were measured using trypan blue assay and homogeneous adenosine triphosphate quantitation assay, respectively, while qualitative changes in cellular morphology were observed under inverted light microscopy. Cellular DNA damage was assessed under fluorescent microscopy and Annexin V/propidium iodide stain was used to investigate the cell death pathway. Findings from this study shown that combined treatment with doxorubicin and photodynamic therapy was more effective in inhibiting the proliferation and growth of MCF-7 cells. Overall, the results indicate that combination of smaller dose of doxorubicin with photodynamic therapy is a promising combined treatment strategy for breast carcinoma. However, this combination warrants further investigation.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Indóis/administração & dosagem , Fotoquimioterapia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Isoindóis , Células MCF-7 , Fármacos Fotossensibilizantes/administração & dosagem
9.
Expert Rev Anticancer Ther ; 17(8): 693-702, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28657372

RESUMO

INTRODUCTION: Globally, breast cancer is the most common life-threatening malignant disease among women. Adjuvant chemotherapeutic treatment of anthracycline-based chemotherapy (e.g., doxorubicin) has been shown to be more advantageous over non-anthracycline-based therapies, yet possess the tenacity of developing resistance and potential side effects which have limited its use in the clinical setting. These reasons necessitate combining doxorubicin with emerging photodynamic treatment regimens. Areas covered: In this review, the authors have concisely explained doxorubicin chemotherapy and the photobiological processes of phthalocyanine triggered photodynamic therapy (PDT). A literature search was conducted and reports demonstrating the use of doxorubicin and photodynamic therapy as a treatment modality for breast cancer were identified. More emphasis was made on studies demonstrating the efficacy and improved anticancer effect of combining chemotherapy with photodynamic therapy. However, it was concluded that for this combination therapy, still in it's infancy, it could be relevant when integrated into standard treatment. Expert Commentary: To these effects, comprehensive models based on experimental evaluations are needed for rational design of anthracycline-based chemotherapy and PDT to be integrated into the clinical setting.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Fotoquimioterapia/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/patologia , Quimioterapia Adjuvante/métodos , Terapia Combinada , Feminino , Humanos , Indóis/administração & dosagem , Isoindóis , Fármacos Fotossensibilizantes/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...