Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 13(14): 9154-9167, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36950705

RESUMO

GeSn compounds have made many interesting contributions in photodetectors (PDs) over the last ten years, as they have a detection limit in the NIR and mid-IR region. Sn incorporation in Ge alters the cut off wavelength. In the present article, p-i-n structures based on GeSn junctions were fabricated to serve as PDs. Arsine (As) is incorporated to develop n-GeSn compounds via a metal induced crystallization (MIC) process followed by i-GeSn on p-Si wafers. The impact of As and Sn doping on the strain characteristics of GeSn has been studied with high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy analyses. The direct transitions and tuning of their band energies have been investigated using diffuse reflectance UV-vis spectroscopy and photoluminescence (PL). The barrier height and spectral responsivity have been controlled with incorporation of As. Variation of As incorporation into GeSn Compounds shifted the Raman peak and hence affected the strain in the Ge network. UV-vis spectroscopy showed that the direct transition energies are lowered as the Ge-As bonding increases as illustrated in Raman spectroscopy investigations. PL and UV-vis spectroscopy of annealed heterostructures at 500 °C showed that there are many transition peaks from the UV to the NIR region as result of oxygen vacancies in the Ge network. The calculated diode parameters showed that As incorporation leads to an increase of the height barrier and thus dark current. Spectral response measurements show that the prepared heterojunctions have spectral responses in near UV and NIR regions that gives them opportunities in UV and NIR photodetection-applications.

3.
Polymers (Basel) ; 14(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683975

RESUMO

An immobilization of graphene oxide (GO) into a matrix of polyvinyl formaldehyde (PVF) foam as an eco-friendly, low cost, superior, and easily recovered sorbent of Pb ions from an aqueous solution is described. The relationships between the structure and electrochemical properties of PVF/GO composite with implanted Pb ions are discussed for the first time. The number of alcohol groups decreased by 41% and 63% for PVF/GO and the PVF/GO/Pb composite, respectively, compared to pure PVF. This means that chemical bonds are formed between the Pb ions and the PVF/GO composite based on the OH groups. This bond formation causes an increase in the Tg values attributed to the formation of a strong surface complexation between adjacent layers of PVF/GO composite. The conductivity increases by about 2.8 orders of magnitude compared to the values of the PVF/GO/Pb composite compared to the PVF. This means the presence of Pb ions is the main factor for enhancing the conductivity where the conduction mechanism is changed from ionic for PVF to electronic conduction for PVF/GO and PVF/GO/Pb.

4.
J Environ Manage ; 312: 114919, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35358846

RESUMO

The development of cost-effective and applied catalysts for organic pollutants degradation is the cornerstone for the future valorizations of these hazardous wastes. Garlic peel was employed as solid support for the assembly of cobalt nanoparticles and was further applied for the catalytic degradation of 4-nitrophenol, bromophenol blue, and a mixture of both. A Cobalt@garlic peel nanocomposite with the morphology of semi-spherical and randomly distributed nanoparticles was prepared without the aid of any hazardous chemicals. The functional groups facilitated the adsorption of cobalt ions onto the surface of garlic peel through van der Waals forces and/or hydrogen bonds. The catalytic experiments were carried out under different operational parameters including pollutant concentration, catalytic dosage, and pH value to identify the optimal conditions for the model solutions. The results showed that the optimal pH for 4-nitrophenol degradation was around 9 and the maximum rate constant 4.56 × 10-3 sec-1. The most prominent feature of the proposed catalyst is the easy/efficient recovery and recycling of the nanoparticles from the reacting medium. This work provided a simple method for designing other similar biomass-stabilized nanocatalysts which might sharply reduce the catalytic treatment costs and broaden the scope of applications.


Assuntos
Poluentes Ambientais , Alho , Nanocompostos , Adsorção , Catálise , Cobalto/química , Poluentes Ambientais/química
5.
Micromachines (Basel) ; 12(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683292

RESUMO

In this study, we investigate a novel simple methodology to synthesize gallium nitride nanoparticles (GaN) that could be used as an active layer in light-emitting diode (LED) devices by combining the crystal growth technique with thermal vacuum evaporation. The characterizations of structural and optical properties are carried out with different techniques to investigate the main featured properties of GaN bulk alloys and their thin films. Field emission scanning electron microscopy (FESEM) delivered images in bulk structures that show micro rods with an average diameter of 0.98 µm, while their thin films show regular microspheres with diameter ranging from 0.13 µm to 0.22 µm. X-ray diffraction (XRD) of the bulk crystals reveals a combination of 20% hexagonal and 80% cubic structure, and in thin films, it shows the orientation of the hexagonal phase. For HRTEM, these microspheres are composed of nanoparticles of GaN with diameter of 8-10 nm. For the optical behavior, a band gap of about from 2.33 to 3.1 eV is observed in both cases as alloy and thin film, respectively. This article highlights the fabrication of the major cubic structure of GaN bulk alloy with its thin films of high electron lifetime.

6.
Front Bioeng Biotechnol ; 9: 648704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898405

RESUMO

Ivabradine hydrochloride (IVR) is a medically important drug because of its ability to lower the heart rate. Techniques reported for IVR determination were expensive, laborious, besides being of poor selectivity. In this study, iron oxide @ carbon nanotube (Fe2O3@MWCNTs) nanocomposite and molecularly imprinted polymer (MIP) were synthesized and used in the fabrication of carbon paste electrodes (CPEs) for the potentiometric detection of IVR in biological and pharmaceutical samples. CPEs of the best sensor were formulated from graphite (41 wt%) as a carbon source, MIP (3 wt.%) as an ionophore, Fe2O3@MWCNTs (5 wt%) as a modifier, and nitrophenyl octyl ether (NPOE, 51 wt.%) as a conductive oil so-called plasticizer. The best sensor exhibits a Nernstian slope (response) of 56 mV decade-1 within the IVR concentration range from 1.0 × 10-3 M to 9.8 × 10-8 M with high selectivity against interfering species (ascorbic, maltose, glucose, lactose, dopamine, glycine) over those reported earlier. The use of Fe2O3@MWCNTs together with MIP in the electrode formulation was found to improve the limit of detection (LOD) from 630 to 98 nM along with high reversibility, a short response time of 30 s, and a good lifetime of more than 2 weeks. The sandwich membrane (SMM) method was used to quantify the H-bonding complexing strength of the MIP binding sites for IVR with Log ß ILn = 11.33. The constructed sensors were successfully applied for the IVR determination in blood serum, urine, and commercial formulations (Savapran®) with high sensitivity.

7.
Mater Sci Eng C Mater Biol Appl ; 116: 111110, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806318

RESUMO

Ivabradine hydrochloride (IVB) has shown high medical importance as it is a medication for lowering the heart rate for the symptomatic chronic heart failure and symptomatic management of stable angina pectoralis. The high dose of IVB may cause severe and prolonged bradycardia, uncontrolled blood pressure, headache, and blurred vision. In this study, a highly sensitive carbon-paste electrode (CPEs) was constructed for the potentiometric determination of IVB in pharmaceutical formulations. t-Butyl calixarene (t-BCX) was used as an ionophore due to its ability to mask IVB in the cavity via multiple H-bonding at the lower rim, as estimated quantitatively by the sandwich membrane method (Log ßILn = 8.62). Besides, the use of multi-walled carbon nanotubes decorated with Fe2O3 nanoparticles (Fe2O3@MWCNTs) as an additive for the paste electrode significantly improved the detection limit of the sensor up to 36 nM, with Nernstian response of 58.9 mV decade-1 in the IVB linear dynamic range of 10-3-10-7 M in aqueous solutions. The constructed sensors showed high selectivity against interfering species that may exist in physiological fluids or pharmaceutical formulations (e.g. Na+, K+, NH4+, Ca2+, Mg2+, Ba2+, Fe3+, Co2+, Cr3+, Sr2+, glucose, lactose, maltose, glycine, dopamine, and ascorbic acid). The sensors were successfully employed for IVB determination in the pharmaceutical formulations (Savapran®).


Assuntos
Calixarenos , Nanotubos de Carbono , Composição de Medicamentos , Eletrodos , Ivabradina , Potenciometria
8.
Membranes (Basel) ; 10(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408564

RESUMO

Carbon nanotubes (CNTs) are a robust material and proven as a promising candidate for a wide range of electronic, optoelectronic and environmental applications. In this work, two different methods were utilized for the preparation of CNTs exhibiting different aspect ratios via chemical vapor deposition (CVD). The as-prepared CNTs were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2adsorption isotherms, thermogravimetric analysis and Raman spectroscopy in order to investigate their morphological and structural properties. Free-standing CNTs "buckypaper" membranes were fabricated, characterized and tailored to meet the requirements of two applications, i.e., (1) the removal of humic acid (HA) from water and (2) separation of oil-in-water emulsions. It was revealed that the hydrophobic buckypapers showed high separation performance for Shell oil-in-water emulsions filtration, with up to 98% through the accumulation of oil droplets onto the membrane surface. The absorption capacity of buckypaper membranes for various organic liquids (oil, chloroform and toluene) was evaluated over 10 absorption cycles to investigate their recyclability and robustness. Moreover, surface modification was introduced to the pristine CNTs to increase their surface hydrophilicity and improve the pure water permeability of buckypapers. These modified buckypapers showed high flux for HA solutions and excellent HA rejection efficiency up to 95%via size exclusion and electrostatic repulsion mechanisms.

9.
Int J Nanomedicine ; 14: 8399-8408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695373

RESUMO

PURPOSE: This work aimed to synthesize surfactant-free AuNPs for targeted delivery of plasmid DNA encoded p53 gene and to avoid conventional production method of Gold nanoparticles (AuNPs) which may adversely affect the final shape, diversity, and size due to accumulation of the formulated surfactant - gold complex to the surface. METHODS: The AuNPs were fabricated using seeded-growth method with L-Cystine methyl ester hydrochloride as capping agent, then loaded with plasmid DNA encoded p53 gene. The resultant AuNPs and AuNPs-p53 complex were evaluated for physical characteristics and morphology. Confirmation of complex formation was performed using gel electrophoresis. Furthermore, the efficient delivery and cytotoxicity behavior of the encoded gene were examined on both healthy lung cells (WI38) and cancerous lung cells (A549). RESULTS: L-cysteine methyl ester hydrochloride AuNPs showed acceptable physical characteristics (30 nm, +36.9 mv, and spherical morphology). P53 attachment to AuNPs was confirmed by gel electrophoresis. The RT-PCR proved the overexpression of p53 by the fabricated AuNPs-p53 complex. The high percentage of cell viability in normal lung cell line (WI 38) proved the safety of L-cysteine methyl ester functionalized AuNPs. Additionally, the apoptotic effect due to expression of p53 gene loaded on AuNPs was only prominent in lung cancer cell line (A549), revealing selectivity and targeting efficiency of anticancer AuNPs-p53 complex. CONCLUSION: AuNPs can be considered as a potential delivery system for effective transfection of plasmid DNA which can be used for successful treatment of cancer.


Assuntos
DNA/genética , Ouro/química , Nanopartículas Metálicas/química , Microtecnologia/métodos , Plasmídeos/genética , Tensoativos/química , Células A549 , Morte Celular , Sobrevivência Celular , Difusão Dinâmica da Luz , Humanos , Nanopartículas Metálicas/ultraestrutura , Proteína Supressora de Tumor p53/metabolismo
10.
Beilstein J Nanotechnol ; 10: 105-118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680283

RESUMO

In this work, we investigated the parameters for decorating multiwalled carbon nanotubes with iron oxide nanoparticles using a new, inexpensive approach based on wet chemistry. The effect of process parameters such as the solvent used, the amount of iron salt or the calcination time on the morphology, decoration density and nanocluster size were studied. With the proposed approach, the decoration density can be adjusted by selecting the appropriate ratio of carbon nanotubes/iron salt, while nanoparticle size can be modulated by controlling the calcination period. Pristine and iron-decorated carbon nanotubes were deposited on silicon substrates to investigate their gas sensing properties. It was found that loading with iron oxide nanoparticles substantially ameliorated the response towards nitrogen dioxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...