Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-481262

RESUMO

Wildlife animals may be susceptible for multiple infectious agents of public health or veterinary relevance, thereby potentially forming a reservoir that bears the constant risk of re-introduction into the human or livestock population. Here, we serologically investigated 493 wild ruminant samples collected in the 2021/22 hunting season in Germany for the presence of antibodies against the severe acute respiratory coronavirus 2 (SARS-CoV-2) and four viruses pathogenic for domestic ruminants, namely the orthobunyavirus Schmallenberg virus (SBV), the reovirus bluetongue virus (BTV) and ruminant pestiviruses like bovine viral diarrhoea virus or border disease virus. The animal species comprised fallow deer, red deer, roe deer, mouflon and wisent. For coronavirus serology, additional 307 fallow, roe and red deer samples collected between 2017 and 2020 at three military training areas were included. While antibodies against SBV could be detected in about 13.6% of the samples collected in 2021/22, only one fallow deer of unknown age tested positive for anti-BTV antibodies and all samples reacted negative for antibodies against ruminant pestiviruses. In an ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2, 25 out of 493 (5.1%) samples collected in autumn and winter 2021/22 scored positive. This sero-reactivity could not be confirmed by the highly specific virus neutralization test, occurred also in 2017, 2018 and 2019, i.e. prior to the human SARS-CoV-2 pandemic, and was likewise observed against the RBD of the related SARS-CoV-1. Therefore, the SARS-CoV-2-seroreactivity was most likely induced by another, hitherto unknown deer virus belonging to the subgenus Sarbecovirus of betacoronaviruses.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-434038

RESUMO

BackgroundThe main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. MethodsTen dogs were trained to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on saliva, urine, and sweat in a randomised, double-blind controlled study. ResultsDogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% and specificity of 95%. In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% and 98% for urine, 91% and 94% for sweat, 82%, and 96% for saliva respectively. ConclusionsThe scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patients symptoms. FundingThe project was funded as a special research project of the German Armed Forces. The funding source DZIF-Fasttrack 1.921 provided us with means for biosampling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...