Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 19848-19858, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737088

RESUMO

The distinctive physical characteristics and wide range of potential applications in optoelectronic and photovoltaic devices have ignited significant interest in two-dimensional materials. Intensive research attention has been focused on Janus transition metal dichalcogenides due to their unique properties resulting from symmetry disruption and their potential in photocatalysis applications. Motivated by the current fascination with Janus TMD heterostructures, we conducted first-principles calculations to examine the stability, electronic, and optical properties of monolayers consisting of ZrSSe, SnSSe, and the ZrSSe/SnSSe heterostructure. The results indicate that the Janus ZrSSe/SnSSe heterostructure exhibits a structural and mechanical stability. Using the HSE06 functional, the ZrSSe/SnSSe heterostructure shows an indirect band gap of 1.20 eV, and band edge analysis reveals a type-II band alignment. The potential for photo/electrocatalysis in the ZrSSe/SnSSe heterostructure for water splitting or generating reactive oxygen species (ROS) has been explored, and it was found that the oxygen evolution reaction (OER) can spontaneously activate in acidic (pH = 0) media under light irradiation, with a potential of U = 1.82 eV. Additionally, the ZrSSe/SnSSe heterostructure exhibits strong light absorption across a wide range, from visible light to the ultraviolet region, at various levels. These findings open up possibilities for the application of ZrSSe/SnSSe-based materials in optoelectronic devices.

2.
ACS Omega ; 7(37): 33453-33460, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157786

RESUMO

Two-dimensional (2D) material-based heterostructures gain increasing interest due to their extraordinary properties and excellent potential for the optoelectronic devices. This study deals with modulation of electronic and optical properties of the ZrS2/PtS2 van der Waals heterostructure under vertical strain and an external electric field based on first principles calculation. Different stacking of ZrS2 and PtS2 layers are considered for the heterostructure formation and the most stable structure with lowest binding energy is selected for further calculations. The stable ZrS2/PtS2 heterostructure shows an indirect band gap of 0.74 eV, which is smaller than that of both ZrS2 and PtS2 monolayers. With the applied external electric field, the band gap value of the ZrS2/PtS2 heterostructure increases with the negative electric field and decreases with the positive electric field. It is observed that the indirect-to-direct band gap transition occurs when the highest negative value of the electric field is applied. In the case of vertical strain applied to the heterostructure, with an increase in compressive strain, the band gap decreases and vice versa for tensile strain. Optical absorption spectra show significant absorption in the visible light region to the ultraviolet light region. This study shows that the electronic and optical properties of ZrS2/PtS2 heterostructures can be modulated by using vertical strains and an external electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...