Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473880

RESUMO

The rapid spread of the highly contagious Omicron variant of SARS-CoV-2 along with its high number of mutations in the spike gene has raised alarm about the effectiveness of current medical countermeasures. To address this concern, we measured neutralizing antibodies against Omicron in three important settings: (1) post-vaccination sera after two and three immunizations with the Pfizer/BNT162b2 vaccine, (2) convalescent sera from unvaccinated individuals infected by different variants, and (3) clinical-stage therapeutic antibodies. Using a pseudovirus neutralization assay, we found that titers against Omicron were low or undetectable after two immunizations and in most convalescent sera. A booster vaccination significantly increased titers against Omicron to levels comparable to those seen against the ancestral (D614G) variant after two immunizations. Neither age nor sex were associated with differences in post-vaccination antibody responses. Only three of 24 therapeutic antibodies tested retained their full potency against Omicron and high-level resistance was seen against fifteen. These findings underscore the potential benefit of booster mRNA vaccines for protection against Omicron and the need for additional therapeutic antibodies that are more robust to highly mutated variants. One Sentence SummaryThird dose of Pfizer/BioNTech COVID-19 vaccine significantly boosts neutralizing antibodies to the Omicron variant compared to a second dose, while neutralization of Omicron by convalescent sera, two-dose vaccine-elicited sera, or therapeutic antibodies is variable and often low.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-467523

RESUMO

The SARS-CoV-2 B.1.617 lineage variants, Kappa (B.1.617.1) and Delta (B.1.617.2, AY) emerged during the second wave of infections in India, but the Delta variants have become dominant worldwide and continue to evolve. The spike proteins of B.1.617.1, B.1.617.2, and AY.1 variants have several substitutions in the receptor binding domain (RBD), including L452R+E484Q, L452R+T478K, and K417N+L452R+T478K, respectively, that could potentially reduce effectiveness of therapeutic antibodies and current vaccines. Here we compared B.1.617 variants, and their single and double RBD substitutions for resistance to neutralization by convalescent sera, mRNA vaccine-elicited sera, and therapeutic neutralizing antibodies using a pseudovirus neutralization assay. Pseudoviruses with the B.1.617.1, B.1.617.2, and AY.1 spike showed a modest 1.5 to 4.4-fold reduction in neutralization titer by convalescent sera and vaccine-elicited sera. In comparison, similar modest reductions were also observed for pseudoviruses with C.37, P.1, R.1, and B.1.526 spikes, but seven- and sixteen-fold reduction for vaccine-elicited and convalescent sera, respectively, was seen for pseudoviruses with the B.1.351 spike. Four of twenty-three therapeutic neutralizing antibodies showed either complete or partial loss of neutralization against B.1.617.2 pseudoviruses due to the L452R substitution, whereas six of twenty-three therapeutic neutralizing antibodies showed either complete or partial loss of neutralization against B.1.617.1 pseudoviruses due to either the E484Q or L452R substitution. Against AY.1 pseudoviruses, the L452R and K417N substitutions accounted for the loss of neutralization by four antibodies and one antibody, respectively, whereas one antibody lost potency that could not be fully accounted for by a single RBD substitution. The modest resistance of B.1.617 variants to vaccine-elicited sera suggest that current mRNA-based vaccines will likely remain effective in protecting against B.1.617 variants, but the therapeutic antibodies need to be carefully selected based on their resistance profiles. Finally, the spike proteins of B.1.617 variants are more efficiently cleaved due to the P681R substitution, and the spike of Delta variants exhibited greater sensitivity to soluble ACE2 neutralization, as well as fusogenic activity, which may contribute to enhanced spread of Delta variants.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452748

RESUMO

Mutations in the spike protein of SARS-CoV-2 variants can compromise the effectiveness of therapeutic antibodies. Most clinical-stage therapeutic antibodies target the spike receptor binding domain (RBD), but variants often have multiple mutations in several spike regions. To help predict antibody potency against emerging variants, we evaluated 25 clinical-stage therapeutic antibodies for neutralization activity against 60 pseudoviruses bearing spikes with single or multiple substitutions in several spike domains, including the full set of substitutions in B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), A.23.1 and R.1 variants. We found that 14 of 15 single antibodies were vulnerable to at least one RBD substitution, but most combination and polyclonal therapeutic antibodies remained potent. Key substitutions in variants with multiple spike substitutions predicted resistance, but the degree of resistance could be modified in unpredictable ways by other spike substitutions that may reside outside of the RBD. These findings highlight the importance of assessing antibody potency in the context of all substitutions in a variant and show that epistatic interactions in spike can modify virus susceptibility to therapeutic antibodies. ImportanceTherapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection (COVID-19), but their effectiveness may be reduced by virus variants with mutations affecting the spike protein. To help predict resistance to therapeutic antibodies in emerging variants, we profiled resistance patterns of 25 antibody products in late stages of clinical development against a large panel of variants that include single and multiple substitutions found in the spike protein. We found that the presence of a key substitution in variants with multiple spike substitutions can predict resistance against a variant, but that other substitutions can affect the degree of resistance in unpredictable ways. These finding highlight complex interactions among substitutions in the spike protein affecting virus neutralization and potentially virus entry into cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...