Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-504888

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes coronavirus disease-19 (COVID-19), emerged in late 2019 in Wuhan, China and its rapid global spread has resulted in millions of deaths. An important public health consideration is the potential for SARS-CoV-2 to establish endemicity in a secondary animal reservoir outside of Asia or acquire adaptations that result in new variants with the ability to evade the immune response and reinfect the human population. Previous work has shown that North American deer mice (Peromyscus maniculatus) are susceptible and can transmit SARS-CoV-2 to naive conspecifics, indicating its potential to serve as a wildlife reservoir for SARS-CoV-2 in North America. In this study, we report experimental SARS-CoV-2 susceptibility of two additional subspecies of the North American deer mouse and two additional deer mouse species, with infectious virus and viral RNA present in oral swabs and lung tissue of infected deer mice and neutralizing antibodies present at 15 days post-challenge. Moreover, some of one species, the California mouse (P. californicus) developed clinical disease, including one that required humane euthanasia. California mice often develop spontaneous liver disease, which may serve as a comorbidity for SARS-CoV-2 severity. The results of this study suggest broad susceptibility of rodents in the genus Peromyscus and further emphasize the potential of SARS-CoV-2 to infect a wide array of North American rodents. ImportanceA significant concern is the spillback of SARS-CoV-2 into North American wildlife species. We have determined that several species of peromyscine rodents, the most abundant mammals in North America, are susceptible to SARS-CoV-2 and that infection is likely long enough that the virus may be able to establish persistence in local rodent populations. Strikingly, some California mice developed clinical disease that suggests this species may be useful for the study of human co-morbidities often associated with severe and fatal COVID-19 disease.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432110

RESUMO

Since its initial discovery in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID19, has spread worldwide and despite significant research efforts, treatment options remain limited. Replication of SARS-CoV-2 in lung is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses triggered, in part, by heightened production of interleukin-6 (IL-6) that recruits lymphocytes to the site of infection that amplify tissue injury. Antagonists of the glucocorticoid and androgen receptors have shown promise in experimental models of COVID19 and in clinical studies, because cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2), are transcriptionally regulated by these receptors. We therefore postulated that the glucocorticoid (GR) and androgen receptor (AR) antagonist, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID19. Animals were infected intranasally with 2.5 x 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/ 2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were then examined at days 3, 5 and 7 post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the initiation and progression of SARS-CoV-2 infection. Results of these studies indicated that oral administration of PT150 decreased replication of SARS-CoV-2 in lung, as well as expression of ACE2 and TMPRSS2 protein. Hypercellularity and inflammatory cell infiltration driven by macrophage responses were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular modeling suggested that PT150 binds to the co-activator interface of the ligand binding domain of both AR and GR and thereby acts as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR across multiple species permissive to SARS-CoV-2 infection revealed a high degree of sequence identity maintained across species, including human, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID19 across variants of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...