Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32385-32393, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38873812

RESUMO

The pronounced conductivity of tin dioxide (SnO2) nanoparticles makes it an ideal multifunctional electrode material, while the challenge is to stabilize the quantum dot (QD) SnO2 nanocore in water. An Anderson-type polyoxomolybdate, (NH4)6[Mo7O24], is employed as an inorganic ligand to stabilize a ca. 6 nm SnO2 QD (Mox@SnO2). X-ray scattering and diffraction studies confirm the tetragonal SnO2 nanocore in Mox@SnO2. Elemental analyses are in good agreement with the mass spectrometric detection of the [Mo7O24]6- cluster present in Mox@SnO2. The ionic POMs attached to the SnO2 surface through [Mo-O-Sn] covalent linkages have been established by surface zeta potential, shift of the [Mo = O]t Raman vibration, and extended X-ray absorption fine structure (EXAFS) analyses. The presence of the [Mo7O24]6- cluster in the Mox@SnO2 is responsible for the remarkable aqueous stability of Mox@SnO2 in the pH range of 3-9. Dominant oxygen vacancy in the SnO2 core, identified by EXAFS data and the anisotropic electron paramagnetic resonance (EPR) signals (g ∼ 2.4 and 1.9), results in facile electronic conduction in Mox@SnO2 while being deposited on the electrode surface. Mox@SnO2 acts as an active catalyst for the electrocatalytic nitrate reduction (eNOR) to ammonia with 94% faradaic efficiency (FE) at -0.2 V vs RHE and a yield rate of 28.9 mg h-1 cm-2. The stability of Mox@SnO2 in acidic pH provides scope to reuse the Mox@SnO2 electrode at least four times with notable NH3 selectivity and a superior production rate (239.06 mmol g-1(cat) h-1). This study demonstrates the essential role of POM in stabilizing SnO2 QD, harnessing its electrochemical activity toward electrocatalytic ammonia production.

2.
Inorg Chem ; 62(49): 20258-20270, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38033302

RESUMO

Herein, we report the uranyl sensitization of Sm3+ emissions in uranium-codoped Li2B4O7:Sm3+ phosphor. The uranyl speciation in codoped [Sm, U] LTB samples was determined by synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy that revealed two coordination shells for U(VI) ions with bond distances of U-Oax (∼1.81 Å) and U-Oeq (∼2.30 Å). EXAFS fitting suggested that the uranyl moiety is present as pentagonal bipyramids (UO7) and hexagonal bipyramids (UO8) with five and six equatorial oxygen ligands, respectively. The alteration of the local structure of Sm3+ from [SmO4] to [SmO7] polyhedra and the changes in the coordination number of equatorial oxygen for uranyl were observed with different codoping concentrations of Sm3+ and uranium. Density functional theory (DFT) calculations suggested the lowering of defect formation energy for Li vacancies on codoping of Sm and U. Hence, we proposed the increase of the equatorial coordination number of UO22+ on the increase in the lithium vacancies in LTB. In addition, DFT supported the feasibility of efficient energy transfer (ET) due to the overlap of uranium and Sm3+ excited state levels. The influence of the same on the spectral features and UO22+ → Sm3+ energy transfer was investigated by time-resolved photoluminescence (PL) studies. The ET efficiency from the UO22+ to Sm3+ was 70.5% in 0.5 mol % codoped [Sm, U] LTB samples. The correlation of EXAFS and luminescence properties indicated a red shift in vibronic features of uranyl emission with increase in the equatorial coordination of the uranyl moiety from five to six. Additionally, a higher probability of ET was observed for uranyl speciation as UO8 hexagonal bipyramids. Temperature-dependent emissions and decay profiles were collected under uranyl excitation to investigate the thermal dependence of ET. A high energy barrier (Ea ∼ 4027 cm-1) was evaluated for the thermal quenching of Sm3+ emissions. This work provides insights into the modulation of luminescence and ET efficiency via structural changes in uranyl and Sm local environment in LTB phosphor.

3.
J Phys Chem Lett ; 10(14): 4142-4147, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31260324

RESUMO

Predictions about the electrical conductance across molecular junctions based on self-assembled monolayers (SAMs) are often made from the SAM precursor properties. Collective electrostatic effects, however, in a densely packed SAM can override these predictions. We studied, experimentally and theoretically, molecular tunneling junctions based on thiolate SAMs with an aromatic biphenyl backbone and variable, highly polarizable halogen termini X (S-(C6H5)2X; X = H, F, Cl, Br, or I). We found that the halogen-terminated systems show tunneling rates and dielectric behavior that are independent of X despite the large change in the electronegativity of the terminal atom. Using density functional theory, we show that collective electrostatic effects result in modulations of the electrostatic potential that are strongly confined spatially along the direction of charge transport, thereby rendering the role of the halogen atoms insignificant for SAMs with conjugated backbones.

4.
Nano Lett ; 19(7): 4634-4640, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184489

RESUMO

Directional excitation of surface plasmon polaritons (SPPs) by electrical means is important for the integration of plasmonics with molecular electronics or steering signals toward other components. We report electrically driven SPP sources based on quantum mechanical tunneling across molecular double-barrier junctions, where the tunneling pathway is defined by the molecules' chemical structure as well as by their tilt angle with respect to the surface normal. Self-assembled monolayers of S(CH2)nBPh (BPh = biphenyl, n = 1-7) on Au, where the alkyl chain and the BPh units define two distinct tunnel barriers in series, were used to demonstrate and control the geometrical effects. The tilt angle of the BPh unit with respect to the surface normal depends on the value of n, and is 45° when n is even and 23° when n is odd. The tilt angle of the alkyl chain is fixed at 30° and independent of n. For values of n = 1-3, SPPs are directionally launched via directional tunneling through the BPh units. For values of n > 3, tunneling along the alkyl chain dominates the SPP excitation. Molecular level control of directionally launching SPPs is achieved without requiring additional on-chip optical elements, such as antennas, or external elements, such as light sources. Using the molecular tunneling junctions, we provide the first direct experimental demonstration of molecular double-barrier tunneling junctions.

5.
Adv Mater ; 30(16): e1707077, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29537111

RESUMO

Self-assembly of solvated nanoparticles (NPs) is governed by numerous competing interactions. However, relatively little is known about the time-dependent mechanisms through which these interactions enable and guide the nanoparticle self-assembly process. Here, using in situ transmission electron microscopy imaging combined with atomistic modeling, it is shown that the forces governing the self-assembly of hydrophobic nanoparticles change with the nanoparticle shapes. By comparing how gold nanospheres, nanocubes, nanorods, and nanobipyramids assemble, it is shown that the strength of the hydrophobic interactions depends on the overlap of the hydrophobic regions of the interacting nanoparticle surfaces determined by the nanoparticle shapes. Specifically, this study reveals that, in contrast to spherical nanoparticles, where van der Waals forces play an important role, hydrophobic interactions can be more relevant for nanocubes with flat side faces, where an oriented attachment between the nanocubes is promoted by these interactions. The attachment of nanocubes is observed to proceed in two distinct pathways: nanocubes either: (i) prealign their faces before the attachment, or (ii) first connect through a misaligned (edge-to-edge) attachment, followed by a postattachment alignment of their faces. These results have important implications for understanding the interaction dynamics of NPs and provide the framework for the design of future self-assembled nanomaterials.

6.
Adv Mater ; 27(42): 6689-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414779

RESUMO

The dielectric response and electrical properties of junctions based on self-assembled monolayers (SAMs) of the form S(CH2)11X can be controlled by changing the polarizability of X (here X = H, F, Cl, Br, or I). A 1000-fold increase in the tunneling rate and a four-fold increase of the dielectric constant (ε r ) with increasing polarizability of X are found.

7.
Inorg Chem ; 54(4): 1661-70, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25615271

RESUMO

Density functional theory (DFT) studies on two polynuclear clusters, [Cu(II)5Gd(III)4O2(OMe)4(teaH)4(O2CC(CH3)3)2(NO3)4] (1) and [Cu5Gd2(OH)4(Br)2-(H2L)2(H3L)2(NO3)2(OH2)4] (2), have been carried out to probe the origin of the large magnetocaloric effect (MCE). The magnetic exchange interactions for 1 and 2 via multiple pathways are estimated using DFT calculations. While the calculated exchange parameters deviate from previous experimental estimates obtained by fitting the magnetic data, the DFT parameter set is found to offer a striking match to the magnetic data for both complexes, highlighting the problem of overparameterization. Magnetostructural correlations for {Cu-Gd} pairs have been developed where both the Cu-O-Gd angles and Cu-O-Gd-O dihedral angles are found to significantly influence the magnitude and sign of the exchange constants. The magnitude of the MCE has been examined as a function of the exchange interactions, and clues on how the effect can be enhanced are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...