Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559316

RESUMO

Antibodies that recognize cancer biomarkers, such as MUC16, can be used as vehicles to deliver contrast agents (imaging) or cytotoxic payloads (therapy) to the site of tumors. MUC16 is overexpressed in 80% of epithelial ovarian cancer (EOC) and 65% of pancreatic ductal adenocarcinomas (PDAC), where effective 'theranostic' probes are much needed. This work aims to develop fully human antibodies against MUC16 and evaluate them as potential immuno-PET imaging probes for detecting ovarian and pancreatic cancers. We developed a fully human monoclonal antibody, M16Ab, against MUC16 using phage display. M16Ab was conjugated with p-SCN-Bn-DFO and radiolabeled with 89Zr. 89Zr-DFO-M16Ab was then evaluated for binding specificity and affinity using flow cytometry. In vivo evaluation of 89Zr-DFO-M16Ab was performed by microPET/CT imaging at different time points at 24−120 h post injection (p.i.) and ex vivo biodistribution studies in mice bearing MUC16-expressing OVCAR3, SKOV3 (ovarian) and SW1990 (pancreatic) xenografts. 89Zr-DFO-M16Ab bound specifically to MUC16-expressing cancer cells with an EC50 of 10nM. 89Zr-DFO-M16Ab was stable in serum and showed specific uptake and retention in tumor xenografts even after 120 h p.i. (microPET/CT) with tumor-to-blood ratios > 43 for the SW1990 xenograft. Specific tumor uptake was observed for SW1990/OVCAR3 xenografts but not in MUC16-negative SKOV3 xenografts. Pharmacokinetic study shows a relatively short distribution (t1/2α) and elimination half-life (t1/2ß) of 4.4 h and 99 h, respectively. In summary, 89Zr-DFO-M16Ab is an effective non-invasive imaging probe for ovarian and pancreatic cancers and shows promise for further development of theranostic radiopharmaceuticals.

2.
Methods Mol Biol ; 2381: 307-331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590284

RESUMO

Functional genomic screens can identify several proteins as potential targets for drug development in cancer. Typically, these drug targets are validated with pharmacological inhibition using small molecules. Given that chemical inhibitors do not exist for a many of these proteins, several promising candidates often remain unexplored. In this chapter, we describe methods for generating protein-based inhibitors of intracellular targets using phage display. This is a scalable and inexpensive approach that can be applied to several protein targets identified in genetic screens. We describe methods for expression of target proteins, construction of phage-display libraries and selection of binding proteins. These synthetic binding proteins can block natural protein interactions within the cancer cell and act as inhibitors. Protein inhibitors have utility in validation of drug targets and can also guide small-molecule drug development.


Assuntos
Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Transporte , Genômica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Biblioteca de Peptídeos , Preparações Farmacêuticas , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...