Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277163

RESUMO

BackgroundIn this phase 2 randomised placebo-controlled clinical trial, we hypothesised that blocking mineralocorticoid receptors with spironolactone in patients with COVID-19 is safe and may reduce illness severity. MethodsHospitalised patients with confirmed COVID-19 were randomly allocated to low dose oral spironolactone (50mg day 1, then 25mg once daily for 21 days) or standard care in a 2:1 ratio. Both groups received dexamethasone 6mg for 10 days. Group allocation was blinded to the patient and research team. Primary outcomes were time to recovery, defined as the number of days until patients achieved WHO Ordinal Scale (OS) category [≤] 3, and the effect of spironolactone on aldosterone, D-dimer, angiotensin II and Von Willebrand Factor (VWF). Results120 patients were recruited in Delhi from 01 February to 30 April 2021. 74 were randomly assigned to spironolactone and dexamethasone (SpiroDex), and 46 to dexamethasone alone (Dex). There was no significant difference in the time to recovery between SpiroDex and Dex groups (SpiroDex median 4.5 days, Dex median 5.5 days, p = 0.055). SpiroDex patients had lower aldosterone levels on day 7 and lower D-dimer levels on days 4 and 7 (day 7 D-dimer mean SpiroDex 1.15{micro}g/mL, Dex 3.15 {micro}g/mL, p = 0.0004). There was no increase in adverse events in patients receiving SpiroDex. Post hoc analysis demonstrated reduced clinical deterioration (pre specified as escalating to WHO OS category >4) in the SpiroDex group vs Dex group (5.4% vs 19.6%). ConclusionLow dose oral spironolactone in addition to dexamethasone was safe and reduced D-Dimer and aldosterone. Although time to recovery was not significantly reduced, fewer patients progressed to severe disease. Phase 3 randomised controlled trials with spironolactone should be considered.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264648

RESUMO

Despite the success of vaccines and selected repurposed treatments, COVID-19 is likely to remain a global health problem and further chemotherapeutics are required. Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials without characterisation of Pharmacokinetics (PK)/Pharmacodynamics (PD) including safety in COVID-19. One such drug is Nafamostat Mesylate (Nafamostat), a synthetic serine protease inhibitor with anticoagulant and anti-inflammatory properties. Preclinical data has demonstrated that it is has potent antiviral activity against SARS-CoV-2 by directly inhibiting the transmembrane protease serine 2 (TMPRSS2) dependent stage of host cell entry. MethodsWe present the findings of a phase Ib/II open label, platform randomised controlled trial (RCT), exploring the safety of intravenous Nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), Nafamostat or an alternative therapy. Secondary endpoints included clinical endpoints such as number of oxygen free days and clinical improvement/ deterioration, PK/PD, thromboelastometry, D Dimers, cytokines, immune cell flow cytometry and viral load. ResultsData is reported from 42 patients, 21 of which were randomly assigned to receive intravenous Nafamostat. The Nafamostat group developed significantly higher plasma creatinine levels, more adverse events and a lower number of oxygen free days. There were no other statistically significant differences in the primary or secondary endpoints between Nafamostat and SoC. PK data demonstrated that intravenous Nafamostat was rapidly broken down to inactive metabolites. We observed an antifibrinolytic profile, and no significant anticoagulant effects in thromboelastometry. Participants in the Nafamostat group had higher D Dimers compared to SoC. There were no differences in cytokine profile and immune cell phenotype and viral loads between the groups. ConclusionIn hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous Nafamostat. Given the number of negative trials with repurposed drugs, our experimental medicine trial highlights the value of PK/PD studies prior to selecting drugs for efficacy trials. Given the mechanism of action, further evaluation of Nafamostat delivered via a different route may be warranted. This trial demonstrates the importance of experimental trials in new disease entities such as COVID-19 prior to selecting drugs for larger trials.

3.
J Clin Neurosci ; 76: 126-133, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32299773

RESUMO

OBJECTIVE: The clinical epidemiology of organ outcomes in pediatric traumatic brain injury (TBI) has not been examined. We describe associated markers of cerebral, cardiac and renal injury after pediatric TBI. DESIGN: Prospective observational study. PATIENTS: Children 0-18 years who were hospitalized with TBI. MEASUREMENTS: Measures of myocardial (at least one elevated plasma troponin [cTnI] ≥ 0.4 ng/ml) and multiorgan (hemodynamic variables, cerebral perfusion, and renal) function were examined within the first ten days of hospital admission and within 24 h of each other. MAIN RESULTS: Data from 28 children who were 11[IQR 10.3] years, male (64.3%), with isolated TBI (67.9%), injury severity score (ISS) 25[10], and admission Glasgow coma score (GCS) 11[9] were examined. Overall, 50% (14 children) had elevated cTnI, including those with isolated TBI (57.9%; 11/19), polytrauma (33.3%; 3/9), mild TBI (57.1% 8/14), and severe TBI (42.9%; 6/11). Elevated cTnI occurred within the first six days of admission and across all age groups, in both sexes, and regardless of TBI lesion type, GCS, and ISS. Age-adjusted admission tachycardia was associated with cTnI elevation (AUC 0.82; p < 0.001). Reduced urine output occurred more commonly in patients with isolated TBI (27.3% elevated cTnI vs. 0% normal cTnI). CONCLUSIONS: Myocardial injury commonly occurs during the first six days after pediatric TBI irrespective of injury severity, age, sex, TBI lesion type, or polytrauma. Age-adjusted tachycardia may be a clinical indicator of myocardial injury, and elevated troponin may be associated with cardio-cerebro-renal dysfunction.


Assuntos
Escala de Coma de Glasgow , Escala de Gravidade do Ferimento , Taquicardia/complicações , Adolescente , Biomarcadores/sangue , Concussão Encefálica/sangue , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/sangue , Síndrome Cardiorrenal , Criança , Pré-Escolar , Feminino , Hospitalização , Humanos , Lactente , Rim/lesões , Masculino , Escores de Disfunção Orgânica , Estudos Prospectivos , Taquicardia/etiologia , Troponina I/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...