Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-520307

RESUMO

Despite the vaccination campaigns for COVID-19, we still cannot control the spread of SARS-CoV-2, as evidenced by the ongoing circulation of the Omicron variants of concern. This highlights the need for broad-spectrum antivirals to further combat COVID-19 and to be prepared for a new pandemic with a (re-)emerging coronavirus. An interesting target for antiviral drug development is the fusion of the viral envelope with host cell membranes, a crucial early step in the replication cycle of enveloped viruses. In this study, we explored the use of cellular electrical impedance (CEI) to quantitatively monitor morphological changes in real time, resulting from cell-cell fusion elicited by SARS-CoV-2 spike. The impedance signal in CEI-quantified cell-cell fusion correlated with the expression level of SARS-CoV-2 spike in transfected HEK293T cells. For antiviral assessment, we validated the CEI assay with the fusion inhibitor EK1 and measured a concentration-dependent inhibition of SARS-CoV-2 spike mediated cell-cell fusion (IC50 value of 0.13 M). In addition, CEI was used to confirm the fusion inhibitory activity of the carbohydrate-binding plant lectin UDA against SARS-CoV-2 (IC50 value of 0.55 M), which complements prior in-house profiling activities. Finally, we explored the utility of CEI in quantifying the fusogenic potential of mutant spike proteins and in comparing the fusion efficiency of SARS-CoV-2 variants of concern. In summary, we demonstrate that CEI is a powerful and sensitive technology that can be applied to studying the fusion process of SARS-CoV-2 and to screening and characterizing fusion inhibitors in a label-free and non-invasive manner. ImportanceDespite the success of the vaccines against SARS-CoV-2, new variants of the virus are still emerging and spreading, underlining the need for additional effective antiviral countermeasures. An interesting antiviral target for enveloped viruses is the fusion of the viral envelope with host cell membranes, a crucial early step in the life cycle of coronaviruses like SARS-CoV-2. Here, we present a sensitive impedance-based method to monitor in real-time cell-cell fusion elicited by the SARS-CoV-2 spike protein. With this technique we can profile entry inhibitors and determine the inhibitory potential of fusion inhibitors for SARS-CoV-2. In addition, with cellular electrical impedance we can evaluate the fusogenic properties of new emerging SARS-CoV-2 variants. Overall, the impedance technology adds valuable information on the fusion process of circulating coronaviruses and helps unravel the mode of action of new antivirals, opening new avenues for the development of next generation fusion inhibitors with improved antiviral activity.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-499297

RESUMO

Urtica dioica agglutinin (UDA) is a carbohydrate-binding small monomeric protein isolated from stinging nettle rhizomes. It inhibits replication of a broad range of viruses, including coronaviruses, in multiple cell types, with appealing selectivity. In this work, we investigated the potential of UDA as a broad-spectrum antiviral agent against SARS-CoV-2. UDA potently blocks entry of pseudotyped SARS-CoV-2 in A549.ACE2+-TMPRSS2 cells, with IC50 values ranging from 0.32 to 1.22 {micro}M. Furthermore, UDA prevents viral replication of the early Wuhan-Hu-1 strain in Vero E6 cells (IC50 = 225 nM), but also the replication of SARS-CoV-2 variants of concern, including Alpha, Beta and Gamma (IC50 ranging from 115 to 171 nM). In addition, UDA exerts antiviral activity against the latest circulating Delta and Omicron variant in U87.ACE2+ cells (IC50 values are 1.6 and 0.9 {micro}M, respectively). Importantly, when tested in Air-Liquid Interface (ALI) primary lung epithelial cell cultures, UDA preserves antiviral activity against SARS-CoV-2 (20A.EU2 variant) in the nanomolar range. Surface plasmon resonance (SPR) studies demonstrated a concentration-dependent binding of UDA to the viral spike protein of SARS-CoV-2, suggesting interference of UDA with cell attachment or subsequent virus entry. Moreover, in additional mechanistic studies with cell-cell fusion assays, UDA inhibited SARS-CoV-2 spike protein-mediated membrane fusion. Finally, pseudotyped SARS-CoV-2 mutants with N-glycosylation deletions in the S2 subunit of the spike protein remained sensitive to the antiviral activity of UDA. In conclusion, our data establish UDA as a potent and broad-spectrum fusion inhibitor for SARS-CoV-2.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477969

RESUMO

The continuous emergence of new SARS-CoV-2 variants urges better understanding of the functional motifs in the spike (S) protein and their tolerance towards mutations. We here focus on the S2 motif which, during virus entry, requires cleavage by a cell surface protease to release the fusion peptide. Though belonging to an immunogenic region, the SARS-CoV-2 S2 motif (811-KPSKR-815) has shown hardly any variation, with its three basic (K/R) residues being >99.99% conserved thus far. By creating a series of mutant S-pseudotyped viruses, we show that K814, which precedes the scissile R815 residue, is dispensable for SARS-CoV-2 spike activation by TMPRSS2 but not TMPRSS13. The latter protease lost its activity towards SARS-CoV-2 S when the S2 motif was swapped with that of the low pathogenic 229E coronavirus (685-RVAGR-689) and also the reverse effect was seen. This swap had no impact on TMPRSS2 activation. Also in the MERS-CoV spike, introducing a dibasic scissile motif was fully accepted by TMPRSS13 but less so by TMPRSS2. Our findings are the first to demonstrate which S2 residues are important for SARS-CoV-2 spike activation by these two airway proteases, with TMPRSS13 exhibiting higher preference for K/R rich motifs than TMPRSS2. This preemptive insight can help to estimate the impact of S2 motif changes as they may appear in new SARS-CoV-2 variants. IMPORTANCESince the start of the COVID-19 pandemic, SARS-CoV-2 is undergoing worldwide selection with frequent appearance of new variants. The surveillance would benefit from proactive characterization of the functional motifs in the spike protein, the most variable viral factor. This is linked to immune evasion but also influences spike functioning in a direct manner. Remarkably, though located in a strong immunogenic region, the S2 cleavage motif has, thus far, remained highly conserved. This suggests that its amino acid sequence is critical for spike activation by airway proteases. To investigate this, we assessed which S2 site mutations affect processing by TMPRSS2 and TMPRSS13, two main activators of the SARS-CoV-2 spike. Being the first in its kind, our study will help to assess the biological impact of S2 site variations as soon as they are detected during variant surveillance.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-418996

RESUMO

The lack of medication to suppress coronavirus infections is a main reason for the dramatic course of the COVID-19 pandemic. There is an urgent need to identify suitable coronavirus drug targets and corresponding lead molecules. Here we describe the discovery of a class of coronavirus inhibitors acting on nsp15, a hexameric protein component of the viral replication-transcription complexes, endowed with immune evasion-associated endoribonuclease activity. SAR exploration of these 1,2,3-triazolo fused betulonic acid derivatives yielded lead molecule 5h as a strong inhibitor (antiviral EC50: 0.6 M) of human coronavirus 229E replication. An nsp15 endoribonuclease active site mutant virus was markedly less sensitive to 5h, and selected resistance to the compound mapped to mutations in the N-terminal part of nsp15, at an interface between two nsp15 monomers. The biological findings were substantiated by the nsp15 binding mode for 5h, predicted by docking. Hence, besides delivering a distinct class of inhibitors, our study revealed a druggable pocket in the nsp15 hexamer with relevance for anti-coronavirus drug development.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-374603

RESUMO

The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV-1 and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards different parts of the respiratory tract. First, the SARS-CoV-2 spike (SARS-2-S) reached higher levels in pseudoparticles when produced at 33{degrees}C instead of 37{degrees}C. Even stronger preference for the upper airway temperature of 33{degrees}C was evident for the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV-1 and MERS-CoV favored 37{degrees}C, in accordance with their preference for the lower airways. Next, SARS-2-S proved efficiently activated by TMPRSS13, besides the previously identified host cell protease TMPRSS2, which may broaden the cell tropism of SARS-CoV-2. TMPRSS13 was found to be an effective spike activator for the virulent coronaviruses but not the common cold HCoV-229E virus. Activation by these proteases requires pre-cleavage of the SARS-2-S S1/S2 cleavage loop, and both its furin motif and extended loop length proved critical to achieve virus entry into airway epithelial cells. Finally, we show that the D614G mutation in SARS-2-S increases S protein stability and expression at 37{degrees}C, and promotes virus entry via cathepsin B/L activation. These spike properties might promote virus spread, potentially explaining why the G614 variant is currently predominating worldwide. Collectively, our findings indicate how the coronavirus spike protein is fine-tuned towards the temperature and protease conditions of the airways, to enhance virus transmission and pathology. SIGNIFICANCE STATEMENTThe rapid spread of SARS-CoV-2, the cause of COVID-19, is related to abundant replication in the upper airways, which is not observed for other highly pathogenic human coronaviruses. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards different parts of the respiratory tract. Coronavirus spikes exhibit distinct temperature preference to precisely match the upper (~33{degrees}C) or lower (37{degrees}C) airways. We identified airway proteases that activate the spike for virus entry into cells, including one protease that may mediate coronavirus virulence. Also, a link was seen between spike stability and entry via endosomal proteases. This mechanism of spike fine-tuning could explain why the SARS-CoV-2 spike-D614G mutant is more transmissible and therefore globally predominant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...