Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253492

RESUMO

BackgroundDeclining humoral immunity in COVID-19 patients and possibility of reinfections has raised concern. Mucosal immunity particularly salivary antibodies could be short-lived. However, long-term studies are sparse. MethodsUsing a multiplex bead-based array platform, we investigated antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in 256 saliva samples from convalescent patients 1-9 months after symptomatic COVID-19 (n=74, Cohort 1), undiagnosed individuals with self-reported questionnaires (n=147, Cohort 2), and individuals sampled pre-pandemic time (n= 35, Cohort 3). ResultsSalivary IgG antibody responses in Cohort 1 (mainly mild COVID-19) were detectable up to 9 month recovery, with high correlations between spike and nucleocapsid specificity. At 9 months, IgG remained in saliva in majority as seen in blood serology. Salivary IgA was rarely detected at this timepoint. In Cohort 2, salivary IgG and IgA responses were significantly associated with recent history of COVID-19 like symptoms. Salivary IgG also tolerated temperature and detergent pre-treatments. ConclusionsUnlike SARS-CoV-2 salivary IgA that appeared short-lived, the specific IgG in saliva appears stable even after mild COVID-19 as noted for blood serology. The non-invasive saliva-based SARS-Cov-2 antibody testing with self-collection at homes may thus serve as a complementary alternative to conventional blood serology.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-174888

RESUMO

ABSTRACTSARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. We systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in a large cohort of unexposed individuals as well as exposed family members and individuals with acute or convalescent COVID-19. Acute phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative family members and individuals with a history of asymptomatic or mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits robust memory T cell responses akin to those observed in the context of successful vaccines, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19 also in seronegative individuals.Competing Interest StatementThe authors have declared no competing interest.View Full Text

3.
Respir Physiol Neurobiol ; 146(2-3): 135-46, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15766902

RESUMO

The pro-inflammatory cytokine interleukin-1beta (IL-1beta) has been proposed to act as an important mediator between infection and apnea in neonates. In this study, respiration and the ability to survive anoxic challenge were investigated between 70 and 95 min after intraperitoneal injection of IL-1beta (10 microg/kg) or NaCl in 9-day-old DBA/1lacJ mice. Using flow plethysmography, we show that mice given IL-1beta exhibited a decreased tidal volume (V(T)) and minute ventilation (V(E)) during normoxia compared to control animals. Hyperoxic challenge revealed functioning peripheral chemoreceptors in all animals, suggesting a central mechanism underlying the ventilatory effects of IL-1beta. In response to anoxia (100% N2), all animals irrespective of treatment displayed a biphasic ventilatory pattern. Mice given IL-1beta exhibited fewer gasps and were unable to sustain gasping efforts for as long as control animals. Additionally, they were less able to autoresuscitate and survive following severe hypoxic apnea. These findings indicate that infection may adversely affect central respiratory control in newborn mice via interleukin-1beta.


Assuntos
Hipóxia/fisiopatologia , Interleucina-1/farmacologia , Respiração/efeitos dos fármacos , Ressuscitação , Animais , Animais Recém-Nascidos , Feminino , Hipercapnia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Pletismografia/métodos , Ventilação Pulmonar , Volume de Ventilação Pulmonar/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...