Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37447944

RESUMO

In this paper, a collaboration scheme between a high-altitude platform (HAP) and several unmanned aerial vehicles (UAVs) for wireless communication networks is investigated. The main objective of this study is to maximize the total downlink throughput of the ground users by optimizing the UAVs' three-dimensional (3D) placements and user associations. An optimization problem is formulated and a separate genetic-algorithm-based approach is proposed to solve the problem. The K-means algorithm is also utilized to find the initial UAV placement to reduce the convergence time of the proposed genetic-algorithm-based allocation. The performance of the proposed algorithm is analyzed in terms of convergence time, complexity, and fairness. Finally, the simulation results show that the proposed HAP-UAV integrated network achieves a higher total throughput through joint user association and UAV placement schemes compared to a scheme with a single HAP serving all users.


Assuntos
Algoritmos , Dispositivos Aéreos não Tripulados , Simulação por Computador
2.
Int J Biostat ; 19(2): 439-453, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37155831

RESUMO

Third generation sequencing technologies such as Pacific Biosciences and Oxford Nanopore provide faster, cost-effective and simpler assembly process generating longer reads than the ones in the next generation sequencing. However, the error rates of these long reads are higher than those of the short reads, resulting in an error correcting process before the assembly such as using the Circular Consensus Sequencing (CCS) reads in PacBio sequencing machines. In this paper, we propose a probabilistic model for the error occurrence along the CCS reads. We obtain the error probability of any arbitrary nucleotide as well as the base calling Phred quality score of the nucleotides along the CCS reads in terms of the number of sub-reads. Furthermore, we derive the error rate distribution of the reads in relation to the pass number. It follows the binomial distribution which can be approximated by the normal distribution for long reads. Finally, we evaluate our proposed model by comparing it with three real PacBio datasets, namely, Lambda, and E. coli genomes, and Alzheimer's disease targeted experiment.


Assuntos
Escherichia coli , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma , Nucleotídeos
3.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105863

RESUMO

In this paper, we propose an environment perception framework for autonomous driving using state representation learning (SRL). Unlike existing Q-learning based methods for efficient environment perception and object detection, our proposed method takes the learning loss into account under deterministic as well as stochastic policy gradient. Through a combination of variational autoencoder (VAE), deep deterministic policy gradient (DDPG), and soft actor-critic (SAC), we focus on uninterrupted and reasonably safe autonomous driving without steering off the track for a considerable driving distance. Our proposed technique exhibits learning in autonomous vehicles under complex interactions with the environment, without being explicitly trained on driving datasets. To ensure the effectiveness of the scheme over a sustained period of time, we employ a reward-penalty based system where a negative reward is associated with an unfavourable action and a positive reward is awarded for favourable actions. The results obtained through simulations on DonKey simulator show the effectiveness of our proposed method by examining the variations in policy loss, value loss, reward function, and cumulative reward for 'VAE+DDPG' and 'VAE+SAC' over the learning process.

4.
Sensors (Basel) ; 18(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347839

RESUMO

Cooperative communication with RF energy harvesting relays has emerged as a promising technique to improve the reliability, coverage, longevity and capacity of future IoT networks. An efficient relay assignment with proper power allocation and splitting is required to satisfy the network's QoS requirements. This work considers the resource management problem in decode and forward relay based cooperative IoT network. A realistic mathematical model is proposed for joint user admission, relay assignment, power allocation and splitting ratio selection problem. The optimization problem is a mixed integer non-linear problem (MINLP) whose objective is to maximize the overall sum rate (bps) while satisfying the practical network constraints. Further, an outer approximation algorithm is adopted which provides epsilon-optimal solution to the problem with guaranteed convergence and reasonable complexity. Simulations of the proposed solution are carried out for various network scenarios. The simulation results demonstrate that cooperative communication with diversity achieves a better admission of IoT users and increases not only their individual data rates but also the overall sum rate of an IoT network.

5.
Sensors (Basel) ; 15(7): 17572-620, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26205271

RESUMO

Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

6.
Sensors (Basel) ; 15(4): 7172-205, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25815444

RESUMO

The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.

7.
Sensors (Basel) ; 13(8): 11032-50, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966194

RESUMO

Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated.


Assuntos
Algoritmos , Redes de Comunicação de Computadores/instrumentação , Desenho Assistido por Computador , Fontes de Energia Elétrica , Transferência de Energia , Telecomunicações/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Sensors (Basel) ; 13(4): 4884-905, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23584119

RESUMO

Due to the rapid increase in the usage and demand of wireless sensor networks (WSN), the limited frequency spectrum available for WSN applications will be extremely crowded in the near future. More sensor devices also mean more recharging/replacement of batteries, which will cause significant impact on the global carbon footprint. In this paper, we propose a relay-assisted cognitive radio sensor network (CRSN) that allocates communication resources in an environmentally friendly manner. We use shared band amplify and forward relaying for cooperative communication in the proposed CRSN. We present a multi-objective optimization architecture for resource allocation in a green cooperative cognitive radio sensor network (GC-CRSN). The proposed multi-objective framework jointly performs relay assignment and power allocation in GC-CRSN, while optimizing two conflicting objectives. The first objective is to maximize the total throughput, and the second objective is to minimize the total transmission power of CRSN. The proposed relay assignment and power allocation problem is a non-convex mixed-integer non-linear optimization problem (NC-MINLP), which is generally non-deterministic polynomial-time (NP)-hard. We introduce a hybrid heuristic algorithm for this problem. The hybrid heuristic includes an estimation-of-distribution algorithm (EDA) for performing power allocation and iterative greedy schemes for constraint satisfaction and relay assignment. We analyze the throughput and power consumption tradeoff in GC-CRSN. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...