Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629453

RESUMO

MOTIVATION: Nowadays, epigenetic gene regulations are studied in each part of the biology, from embryonic development to diseases such as cancers and neurodegenerative disorders. Currently, to quantify and compare CpG methylation levels of a specific region of interest, the most accessible technique is the bisulfite sequencing PCR (BSP). However, no existing user-friendly tool is able to analyze data from all approaches of BSP. Therefore, the most convenient way to process results from the direct sequencing of PCR products (direct-BSP) is to manually analyze the chromatogram traces, which is a repetitive and prone to error task. RESULTS: Here, we implement a new R-based tool, called ABSP for analysis of bisulfite sequencing PCR, providing a complete analytic process of both direct-BSP and cloning-BSP data. It uses the raw sequencing trace files (.ab1) as input to compute and compare CpG methylation percentages. It is fully automated and includes a user-friendly interface as a built-in R shiny app, quality control steps and generates publication-ready graphics. AVAILABILITY AND IMPLEMENTATION: The ABSP tool and associated data are available on GitHub at https://github.com/ABSP-methylation-tool/ABSP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Sulfitos , Análise de Sequência de DNA/métodos , Reação em Cadeia da Polimerase/métodos , Software
2.
iScience ; 25(8): 104681, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35856027

RESUMO

Living cells use signaling and regulatory mechanisms to adapt to environmental stresses. Adaptation to oxidative stress involves the regulation of many enzymes in both glycolysis and pentose phosphate pathways (PPP), so as to support PPP-driven NADPH recycling for antioxidant defense. The underlying regulatory logic is investigated by developing a kinetic modeling approach fueled with metabolomics and 13C-fluxomics datasets from human fibroblast cells. Bayesian parameter estimation and phenotypic analysis of models highlight complementary roles for several metabolite-enzyme regulations. Specifically, carbon flux rerouting into PPP involves a tight coordination between the upregulation of G6PD activity concomitant to a decreased NADPH/NADP+ ratio and the differential control of downward and upward glycolytic fluxes through the joint inhibition of PGI and GAPD enzymes. Such functional interplay between distinct regulatory feedbacks promotes efficient detoxification and homeostasis response over a broad range of stress level, but can also explain paradoxical pertubation phenotypes for instance reported for 6PGD modulation in mammalian cells.

3.
FEBS J ; 287(24): 5345-5361, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32222033

RESUMO

Cell-to-cell variability in stress response is a bottleneck for the construction of accurate and predictive models which could guide clinical diagnosis and treatment of certain diseases, for example, cancer. Indeed, such phenotypic heterogeneity can lead to fractional killing and persistence of a subpopulation of cells which are resistant to a given treatment. The heat shock response network plays a major role in protecting the proteome against several types of injuries. Here, we combine high-throughput measurements and mathematical modeling to unveil the molecular origin of the phenotypic variability in the heat shock response network. Although the mean response coincides with known biochemical measurements, we found a surprisingly broad diversity in single-cell dynamics with a continuum of response amplitudes and temporal shapes for several stimulus strengths. We theoretically predict that the broad phenotypic heterogeneity is due to network ultrasensitivity together with variations in the expression level of chaperones controlled by the transcription factor heat shock factor 1. Furthermore, we experimentally confirm this prediction by mapping the response amplitude to chaperone and heat shock factor 1 expression levels.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Modelos Teóricos , Proteoma/análise , Estresse Fisiológico , Células HeLa , Humanos , Fenótipo
4.
Proteomics ; 19(21-22): e1800454, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430054

RESUMO

Many solid cancers are hierarchically organized with a small number of cancer stem cells (CSCs) able to regrow a tumor, while their progeny lacks this feature. Breast CSC is known to contribute to therapy resistance. The study of those cells is usually based on their cell-surface markers like CD44high /CD24low/neg or their aldehyde dehydrogenase (ALDH) activity. However, these markers cannot be used to track the dynamics of CSC. Here, a transcriptomic analysis is performed to identify segregating gene expression in CSCs and non-CSCs, sorted by Aldefluor assay. It is observed that among ALDH-associated genes, only ALDH1A1 isoform is increased in CSCs. A CSC reporter system is then developed by using a far red-fluorescent protein (mNeptune) under the control of ALDH1A1 promoter. mNeptune-positive cells exhibit higher sphere-forming capacity, tumor formation, and increased resistance to anticancer therapies. These results indicate that the reporter identifies cells with stemness characteristics. Moreover, live tracking of cells in a microfluidic system reveals a higher extravasation potential of CSCs. Live tracking of non-CSCs under irradiation treatment show, for the first time, live reprogramming of non-CSCs into CSCs. Therefore, the reporter will allow for cell tracking to better understand the implication of CSCs in breast cancer development and recurrence.


Assuntos
Família Aldeído Desidrogenase 1/genética , Neoplasias da Mama/genética , Rastreamento de Células , Perfilação da Expressão Gênica , Genes Reporter , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
5.
Methods Mol Biol ; 1729: 203-231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29429094

RESUMO

We describe two methods for high-resolution fluorescence imaging of the positioning and mobility of E. coli chemoreceptors fused to photoconvertible fluorescent proteins. Chemoreceptors such as Tar and Tsr are transmembrane proteins expressed at high levels (thousands of copies per cell). Together with their cognate cytosolic signaling proteins, they form clusters on the plasma membrane. Theoretical models imply that the size of these clusters is an important parameter for signaling, and recent PALM imaging has revealed a broad distribution of cluster sizes. We describe experimental setups and protocols for PALM imaging in fixed cells with ~10 nm spatial precision, which allows analysis of cluster-size distributions, and localized-photoactivation single-particle tracking (LPA-SPT) in live cells at ~10 ms temporal resolution, which allows for analysis of cluster mobility.


Assuntos
Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/ultraestrutura , Receptores de Superfície Celular/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Quimiotaxia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Imageamento Tridimensional , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Microscopia de Fluorescência , Fotodegradação , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Imagem Individual de Molécula , Análise Espaço-Temporal
6.
Elife ; 62017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231170

RESUMO

We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state switching regime. Our findings underscore the importance of molecular noise, arising not only in gene expression but also in protein networks.


Assuntos
Variação Biológica da População , Quimiotaxia , Escherichia coli/fisiologia , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência , Fosforilação , Processamento de Proteína Pós-Traducional , Análise de Célula Única
7.
Photochem Photobiol ; 88(1): 167-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22044317

RESUMO

Singlet oxygen ((1)O(2)) is an electronic state of molecular oxygen which plays a major role in many chemical and biological photo-oxidation processes. It has a high chemical reactivity which is commonly harnessed for therapeutic issues. Indeed, (1)O(2) is believed to be the major cytotoxic agent in photodynamic therapy. In this treatment of cancer, (1)O(2) is created, among other reactive species, by an indirect transfer of energy from light to molecular oxygen via excitation of a photosensitizer (PS). This PS is believed to be necessary to obtain an efficient (1)O(2) production. In this paper, we demonstrate that production of (1)O(2) is achieved in living cells from PS-free 1270 nm laser excitation of molecular oxygen. The quantity of (1)O(2) produced in this way is sufficient to induce an oxidative stress leading to cell death. Other effects such as thermal stress are discriminated and we conclude that cell death is only due to (1)O(2) creation. This new simplified scheme of (1)O(2) activation can be seen as a breakthrough for phototherapies of malignant diseases and/or as a noninvasive possibility to generate reactive oxygen species in a tightly controlled manner.


Assuntos
Morte Celular , Neoplasias/patologia , Oxigênio Singlete/metabolismo , Humanos , Neoplasias/metabolismo , Fotoquímica
8.
Opt Express ; 18(22): 22928-36, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21164631

RESUMO

We report on the development of a tunable Raman fiber ring laser especially designed for the investigation of the 3Σ(-)(g) →1 Δg transition of molecular oxygen. Singlet oxygen (1Δg) is a reactive species of importance in the fields of biology, photochemistry, and phototherapy. Tunability of the Raman fiber ring laser is achieved without the use of an intracavity tunable bandpass filter and the laser thus achieves a slope efficiency only obtained up to now in Perot-Fabry cavities. A measurement of the action spectrum of a singlet oxygen trap is made in air-saturated ethanol and acetone to demonstrate the practical application of the tunable Raman fiber ring laser for the investigation of the 3Σ(-)(g) →1 Δg transition of molecular oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...