Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353925

RESUMO

Demyelination is the loss of myelin in CNS, resulting in damaged myelin sheath. Oxidative stress and neuroinflammation play a key role in inducing demyelinating diseases like MS; hence, controlling oxidative stress and neuroinflammation is important. Cuprizone (CPZ), a copper chelator, generates oxidative stress and neuroinflammation, thereby inducing demyelination. Therefore, the CPZ-induced demyelinating mouse model (CPZ model) is widely used in research. The present study was intended to unravel a mechanism of inhibition of demyelination by arsenic in a CPZ model, which is otherwise known for its toxicity. We investigated an alternative mechanism of inhibition of demyelination by arsenic through the reversal of SOD1 activity employing in silico analysis, analytical chemistry techniques, and in vitro and in vivo experiments. In vivo experiments showed protection of body weight, survivability, and myelination of the corpus callosum in CPZ and arsenic-co-exposed animals, where neuroinflammation was apparently not involved. In vitro experiments revealed that arsenic-mediated reversal of impaired SOD1 activity leads to reduced cellular ROS levels and better viability of primary oligodendrocytes. Reversal of SOD1 activity was also observed in the corpus callosum tissue isolated from experimental animals. In silico and analytical chemistry studies revealed that similar to copper, arsenic can potentially bind to CPZ and thereby make the copper freely available for SOD1 activity. Suitable neurobehavior tests further validated the protective effect of arsenic. Taken together, the present study revealed that arsenic protects oligodendrocytes and demyelination of corpus callosum by reversing CPZ-induced impaired SOD1 activity.

2.
Neurotoxicology ; 92: 1-14, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777461

RESUMO

Arsenic is infamous for its adverse health effects worldwide. It is known to induce cognitive impairment in experimental model animals and children in the arsenic-affected area. Although the effect of arsenic on neuronal health is well studied, but the involvement of the brain immune component, microglia, has not been well explored. The present study is focused on examining the role of microglia in arsenic-induced cognitive impairment. We have used balb/c mice for the study. Pregnant dams were gavaged with sodium arsenite (0.38 mg/kg body weight) from gestational day 5 (GD5) till postnatal day 22 (PND22). Mice were sacrificed on PND 7, 14, 22 and isolated brains were used for various assays. The study reveals that perinatal arsenic exposure keeps the microglia activated and skews them towards the M1 phenotype. Increased microglial proliferation, ROS, NO, higher levels of proinflammatory cytokines and chemokines were observed in the arsenic exposed group. Enhanced phagocytosis and phagocytic receptor TREM2, along with decreased expression of SNAP25 and PSD95, were correlated for enhanced neuronal pruning leading to impaired learning and memory response. Taken together, the study reveals an association between arsenic exposure and altered cognitive response where enhanced neuronal pruning by arsenic-activated microglia plays an important role in developing mice.


Assuntos
Arsênio , Disfunção Cognitiva , Animais , Arsênio/metabolismo , Arsênio/toxicidade , Cognição , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Feminino , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Microglia , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo
3.
Environ Toxicol Pharmacol ; 93: 103883, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550874

RESUMO

The global use of bisphenol S (BPS) has now been significantly increased for commensurate utilization as a substitute for BPA for its regulatory concerns. Though, previous reports indicated that BPS been also appeared as a toxic congener comparable to BPA. In the present study, we determined nephrotoxicity condition induced due to BPS exposure. Results indicated that BPS significantly promoted histopathological disturbance in the kidney, and altered the levels of biomarkers of kidney damage in serum and urine samples of Wistar rats. It is also indicated that BPS altered the expression of kidney damage biomarkers associated with glomerular and tubular injury. Additionally, we determined the perturbation of kidney metabolites in the underlying pathophysiological response of kidney injury due to BPS exposure. Gas chromatography-mass spectrometry based untargeted metabolomics exhibited 20 significantly perturbed metabolites. Moreover, metabolic pathway analysis revealed significant disturbance in the TCA cycle and pyruvate metabolism pathways.


Assuntos
Nefropatias , Metabolômica , Animais , Compostos Benzidrílicos/toxicidade , Biomarcadores/urina , Cromatografia Gasosa-Espectrometria de Massas , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Metabolômica/métodos , Fenóis , Ratos , Ratos Wistar , Sulfonas
4.
Environ Toxicol Pharmacol ; 92: 103858, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351628

RESUMO

Arsenic activates microglia and exerts bystander effects on neuron. The present study is focused to test whether minocycline, a second generation antibiotic, can reverse the effect of developmental arsenic exposure on microglial activation and function. Pregnant Balb/c dams were gavaged with sodium arsenite (0.38 mg/kg bd wt) from gestational day 5 (GD5) till post natal day 21 (PND21) and then one group of pups continued till PND59 with arsenic gavage. Minocycline (33 mg/kg bd wt) was administered intraperitoneally two weeks till sacrifice, every alternate day. Mice were sacrificed on PND22 and PND60 and used for various assays. Primary microglial were isolated (ex vivo microglia) from experimental animals and used to measure reactive oxygen species (ROS), nitric oxide (NO), cytokine production and phagocytosis. The whole brain lysate was used for western blot analysis of microglial marker CD68 and synaptic marker, post synaptic density protein 95 (PSD95). For real-time PCR analysis of triggering receptor expressed on myeloid cells 2 (TREM2) and PSD95, RNA isolated from whole brain was used. The study reveals that minocycline administration reversed arsenic-induced increased expression of CD68, ROS, NO, cytokine production, phagocytosis and TREM2 expression. Arsenic-induced reduced expression of PSD95 protein was reversed by minocycline, although the mRNA of PSD95 was unaltered among different groups. Finally, we have checked the learning and memory response of the experimental animals using Y-maze test to correlate the arsenic-induced altered level of synaptic protein. Taken together, the present study finds minocycline to reduce arsenic-induced microglial activation and function which in turn reverses the arsenic-induced impaired learning and memory response.


Assuntos
Arsênio , Minociclina , Animais , Arsênio/metabolismo , Arsênio/toxicidade , Citocinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microglia , Minociclina/farmacologia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo
5.
J Biol Chem ; 298(1): 101521, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952004

RESUMO

CD200R1 is an inhibitory surface receptor expressed in microglia and blood macrophages. Microglial CD200R1 is known to control neuroinflammation by keeping the microglia in resting state, and therefore, tight regulation of its expression is important. CCAAT/enhancer-binding protein ß (CEBPß) is the known regulator of CD200R1 transcription. In the present study, our specific intention was to find a possible posttranscriptional regulatory mechanism of CD200R1 expression. Here we investigated a novel regulatory mechanism of CD200R1 expression following exposure to an environmental stressor, arsenic, combining in silico analysis, in vitro, and in vivo experiments, as well as validation in human samples. The in silico analysis and in vitro studies with primary neonatal microglia and BV2 microglia revealed that arsenic demethylates the promoter of a microRNA, miR-129-5p, thereby increasing its expression, which subsequently represses CD200R1 by binding to its 3'-untranslated region and shuttling the CD200R1 mRNA to the cytoplasmic-processing body in mouse microglia. The role of miR-129-5p was further validated in BALB/c mouse by stereotaxically injecting anti-miR-129. We found that anti-miR-129 reversed the expression of CD200R1, as well as levels of inflammatory molecules IL-6 and TNF-α. Experiments with a CD200R1 siRNA-induced loss-of-function mouse model confirmed an miR-129-5p→CD200R1→IL-6/TNF-α signaling axis. These main findings were replicated in a human cell line and validated in human samples. Taken together, our study revealed miR-129-5p as a novel posttranscriptional regulator of CD200R1 expression with potential implications in neuroinflammation and related complications.


Assuntos
Arsênio , MicroRNAs , Doenças Neuroinflamatórias , Receptores de Orexina , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Interleucina-6/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Environ Toxicol Pharmacol ; 77: 103372, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32203925

RESUMO

Previous studies highlighted bisphenol S (BPS), an industrial chemical responsible for harmful effects comparable to its congener substance bisphenol A (BPA). Accounted for various adversities to biological functions, it could alter the expression of endogenous metabolites in many metabolic processes. The study was aimed to investigate the altered metabolites in hyperglycemic condition triggered by sub-chronic exposure of BPS in serum and urine samples of Wistar rats. Invaded effects of hyperglycemia due to BPS exposure on Wistar rats were investigated by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Metabolomic profiling of serum and urinary metabolites was done by gas chromatography-mass spectrometry (GC-MS) analysis. The metabolomics data were represented by one way ANOVA, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) along with the mapping of perturbed metabolic pathways. The OGTT and ITT showed increased levels of glucose in treated animals with median and high doses, indicating the manifestation of hyperglycemia. The metabolomic profiling of serum and urine revealed BPS could cause consequential metabolomic perturbation mainly of amino acids, sugars, and organic acids. Furthermore, the extrapolation of Kyoto Encyclopedia of Genes and Genomes (KEGG) based systematic analysis helped to monitor the altered pathways, including amino acids, glycolysis, pyruvate metabolism, etc., which were provoked due to BPS exposure. The overview of the perturbed metabolite profiling in rats promisingly showed early diagnostic markers of hyperglycemic condition triggered due to the BPS exposure. Findings from this study will be helpful towards the exploration of mechanistic insights of several disturbed pathways.


Assuntos
Hiperglicemia/induzido quimicamente , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Teste de Tolerância a Glucose , Glicólise/efeitos dos fármacos , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Hiperglicemia/urina , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Fenóis/sangue , Fenóis/farmacocinética , Fenóis/urina , Ratos Wistar , Sulfonas/sangue , Sulfonas/farmacocinética , Sulfonas/urina
7.
Mol Neurobiol ; 56(2): 1488-1499, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948949

RESUMO

Recent studies showed that neuronal surface protein CD200 plays a key role in the regulation of neuroinflammation. Previously, we showed that arsenic (0.38 mg/kg body weight) exposure induces microglial activation and consequently IL-6/TNF-α secretion. This result indicated the possibility of alteration in the expression of CD200. Therefore, the present study was focused on checking arsenic-induced alteration in CD200 expression and revealing the underlying mechanism. Male BALB/c mice were exposed to arsenic (vehicle, 0.038 and 0.38 mg/kg body weight) for 60 days, and the expression level of CD200 was found to be decreased which was rescued by minocycline (33 mg/kg body weight) co-administration. Higher CD68 staining, increased level of IL-6/TNF-α, as well as higher level of IFNγ, were observed in in vivo arsenic-exposed groups. Interestingly, in vitro arsenic exposure could not increase IL-6/TNF-α level in the culture supernatant, whereas, supplementation of IFNγ could mimic the in vivo results. However, arsenic could not induce IFNγ production from brain endothelial cells, microglia, and astrocytes, thereby suggesting the entry of IFNγ through the impaired blood-brain barrier. Evans blue fluorescence in the brain confirms altered blood-brain barrier permeability although no changes were observed in the expression level of tight junction proteins (claudin-5 and occludin). Finally, intracerebral injection of anti-IFNγ neutralizing antibody in arsenic-exposed brain reduced microglia activation (IL-6 and TNF-α and CD68 expression) and subsequently rescued CD200 level. Taken together, the study showed that arsenic-mediated compromised blood-brain barrier is a major driving force to induce microglial IL-6 and TNF-α production through serum IFNγ leading to CD200 downregulation.


Assuntos
Antígenos CD/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Citocinas/farmacologia , Microglia/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...