Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e32897, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027627

RESUMO

The sensible selection of celestial objects for observation by the James Web Space Telescope (JWST) is pivotal for the precise decision-making (DM) process, aligning with scientific priorities and instrument capabilities to maximize valuable data acquisition to address key astronomical questions within the constraints of limited observation time. Aggregation operators are valuable models for condensing and summarizing a finite set of data of imprecise nature. Utilization of these operators is critical when addressing multi-attribute decision-making (MCDM) challenges. The complex spherical fuzzy (CSF) framework effectively captures and represents the uncertainty that arises in a DM problem with more precision. This paper presents two novel aggregation operators, namely the complex spherical fuzzy Yager weighted averaging (CSFYWA) operator and the complex spherical fuzzy Yager weighted geometric (CSFYWG) operator. Many fundamental structural properties of these operators are delineated, and thereby an improved score function is suggested that addresses the limitations of the existing score function within the CSF system. The newly defined operators are applied to formulate an algorithm for MADM problems to tackle the challenges of ambiguous data in the selection process. Moreover, these strategies are effectively applied to handle the MADM problem of selecting the optimal astronomical object for space observation within the CSF context. Additionally, a comparative analysis is also performed to demonstrate the validity and superiority of the proposed techniques compared to the existing strategies.

2.
Granul Comput ; 7(2): 337-352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38624753

RESUMO

Fermatean fuzzy set theory is emerging as a novel mathematical tool to handle uncertainties in different domains of real world. Fermatean fuzzy sets were presented in order that uncertain information from quite general real-world decision-making situations could be mathematically tractable. To that purpose, these sets are more flexible and reliable than intuitionistic and Pythagorean fuzzy sets. This paper presents a novel hybrid model, namely, the Fermatean fuzzy bipolar soft set (FFBSS, in short) model as a general extension of two powerful existing models, that is, fuzzy bipolar soft set and Pythagorean fuzzy bipolar soft set models. Some fundamental properties of the proposed FFBSS model, namely, subset-hood, equal FFBSSs, relative null and relative absolute FFBSSs, restricted intersection and union, extended intersection and union, AND operation and OR operation are investigated along with numerical examples. In addition, certain basic operations, including Fermatean fuzzy weighted average and score function of FFBSSs are proposed. Furthermore, two applications of FFBSS are explored to deal with different multiattribute decision-making situations, that is, selection of best surgeon robot and analysis of most affected country due to COVID-19 ('CO' stands for corona, 'VI' for virus, 'D' for disease, and '19' stands for its year of emergence, that is, 2019). The proposed methodology is supported by an algorithm. At the end, a comparison analysis of the proposed hybrid model with some existing models, including Pythagorean fuzzy bipolar soft sets is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...