Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38319759

RESUMO

Endovascular intervention is a minimally invasive method for treating cardiovascular diseases. Although fluoroscopy, known for real-time catheter visualization, is commonly used, it exposes patients and physicians to ionizing radiation and lacks depth perception due to its 2D nature. To address these limitations, a study was conducted using teleoperation and 3D visualization techniques. This in-vitro study involved the use of a robotic catheter system and aimed to evaluate user performance through both subjective and objective measures. The focus was on determining the most effective modes of interaction. Three interactive modes for guiding robotic catheters were compared in the study: 1) Mode GM, using a gamepad for control and a standard 2D monitor for visual feedback; 2) Mode GH, with a gamepad for control and HoloLens providing 3D visualization; and 3) Mode HH, where HoloLens serves as both control input and visualization device. Mode GH outperformed other modalities in subjective metrics, except for mental demand. It exhibited a median tracking error of 4.72 mm, a median targeting error of 1.01 mm, a median duration of 82.34 s, and a median natural logarithm of dimensionless squared jerk of 40.38 in the in-vitro study. Mode GH showed 8.5%, 4.7%, 6.5%, and 3.9% improvements over Mode GM and 1.5%, 33.6%, 34.9%, and 8.1% over Mode HH for tracking error, targeting error, duration, and dimensionless squared jerk, respectively. To sum up, the user study emphasizes the potential benefits of employing HoloLens for enhanced 3D visualization in catheterization. The user study also illustrates the advantages of using a gamepad for catheter teleoperation, including user-friendliness and passive haptic feedback, compared to HoloLens. To further gauge the potential of using a more traditional joystick as a control input device, an additional study utilizing the Haption VirtuoseTM robot was conducted. It reveals the potential for achieving smoother trajectories, with a 38.9% reduction in total path length compared to a gamepad, potentially due to its larger range of motion and single-handed control.

2.
Sci Rep ; 11(1): 23239, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853369

RESUMO

Microrobots (MRs) have attracted significant interest for their potentialities in diagnosis and non-invasive intervention in hard-to-reach body areas. Fine control of biomedical MRs requires real-time feedback on their position and configuration. Ultrasound (US) imaging stands as a mature and advantageous technology for MRs tracking, but it suffers from disturbances due to low contrast resolution. To overcome these limitations and make US imaging suitable for monitoring and tracking MRs, we propose a US contrast enhancement mechanism for MR visualization in echogenic backgrounds (e.g., tissue). Our technique exploits the specific acoustic phase modulation produced by the MR characteristic motions. By applying this principle, we performed real-time visualization and position tracking of a magnetic MR rolling on a lumen boundary, both in static flow and opposing flow conditions, with an average error of 0.25 body-lengths. Overall, the reported results unveil countless possibilities to exploit the proposed approach as a robust feedback strategy for monitoring and tracking biomedical MRs in-vivo.

3.
Adv Healthc Mater ; 9(17): e1901862, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32627972

RESUMO

Advances in nanomedicine, coupled with novel methods of creating advanced materials at the nanoscale, have opened new perspectives for the development of healthcare and medical products. Special attention must be paid toward safe design approaches for nanomaterial-based products. Recently, artificial intelligence (AI) and machine learning (ML) gifted the computational tool for enhancing and improving the simulation and modeling process for nanotoxicology and nanotherapeutics. In particular, the correlation of in vitro generated pharmacokinetics and pharmacodynamics to in vivo application scenarios is an important step toward the development of safe nanomedicinal products. This review portrays how in vitro and in vivo datasets are used in in silico models to unlock and empower nanomedicine. Physiologically based pharmacokinetic (PBPK) modeling and absorption, distribution, metabolism, and excretion (ADME)-based in silico methods along with dosimetry models as a focus area for nanomedicine are mainly described. The computational OMICS, colloidal particle determination, and algorithms to establish dosimetry for inhalation toxicology, and quantitative structure-activity relationships at nanoscale (nano-QSAR) are revisited. The challenges and opportunities facing the blind spots in nanotoxicology in this computationally dominated era are highlighted as the future to accelerate nanomedicine clinical translation.


Assuntos
Inteligência Artificial , Nanomedicina , Simulação por Computador , Aprendizado de Máquina , Poder Psicológico
4.
Micromachines (Basel) ; 11(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340402

RESUMO

With the advent of small-scale robotics, several exciting new applications like Targeted Drug Delivery, single cell manipulation and so forth, are being discussed. However, some challenges remain to be overcome before any such technology becomes medically usable; among which propulsion and biocompatibility are the main challenges. Propulsion at micro-scale where the Reynolds number is very low is difficult. To overcome this, nature has developed flagella which have evolved over millions of years to work as a micromotor. Among the microscopic cells that exhibit this mode of propulsion, sperm cells are considered to be fast paced. Here, we give a brief review of the state-of-the-art of Spermbots - a new class of microrobots created by coupling sperm cells to mechanical loads. Spermbots utilize the flagellar movement of the sperm cells for propulsion and as such do not require any toxic fuel in their environment. They are also naturally biocompatible and show considerable speed of motion thereby giving us an option to overcome the two challenges of propulsion and biocompatibility. The coupling mechanisms of physical load to the sperm cells are discussed along with the advantages and challenges associated with the spermbot. A few most promising applications of spermbots are also discussed in detail. A brief discussion of the future outlook of this extremely promising category of microrobots is given at the end.

5.
Expert Opin Drug Deliv ; 16(11): 1259-1275, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31580731

RESUMO

Introduction: There is growing emphasis on the development of bioinspired and biohybrid micro/nanorobots for the targeted drug delivery (TDD). Particularly, stimuli-responsive materials and magnetically triggered systems, identified as the most promising materials and design paradigms. Despite the advances made in fabrication and control, there remains a significant gap in clinical translation. Areas covered: This review discusses the opportunities and challenges about micro/nanorobotics for the TDD as evolutionary evidence in bio-nanotechnology, material science, biohybrid robotics, and many more. Important consideration in context with the material's compatibility/immunogenicity, ethics, and security risk are reported based on the development in artificial intelligence (AI)/machine learning described in literature. The versatility and sophistication of biohybrid components design are being presented, highlighting stimuli-responsive biosystems as smart mechanisms and on-board sensing and control elements. Expert opinion: Focusing on key issues for high controllability at micro- and nano-scale systems in TDD, biohybrid integration strategies, and bioinspired key competences shall be adopted. The promising outlook portraying the commercialization potential and economic viability of micro/nanorobotics will benefit to clinical translation.


Assuntos
Sistemas de Liberação de Medicamentos , Nanotecnologia , Robótica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...