Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cancer Cell Int ; 24(1): 219, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926695

RESUMO

Lung cancer (LC) ranks second most prevalent cancer in females after breast cancer and second in males after prostate cancer. Based on the GLOBOCAN 2020 report, India represented 5.9% of LC cases and 8.1% of deaths caused by the disease. Several clinical studies have shown that LC occurs because of biological and morphological abnormalities and the involvement of altered level of antioxidants, cytokines, and apoptotic markers. In the present study, we explored the antiproliferative activity of indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogues against LC using in-vitro, in-silico, and in-vivo models. In-vitro screening against A549 cells revealed compounds 9B (8-methoxy-5-(3,4,5-trimethoxyphenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) and 12B (5-(4-chlorophenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) as potential pyrimidine analogues against LC. Compounds 9B and 12B were docked with different molecular targets IL-6, Cyt-C, Caspase9, and Caspase3 using AutoDock Vina 4.1 to evaluate the binding affinity. Subsequently, in-vivo studies were conducted in albino Wistar rats through ethyl-carbamate (EC)- induced LC. 9B and 12B imparted significant effects on physiological (weight variation), and biochemical (anti-oxidant [TBAR's, SOD, ProC, and GSH), lipid (TC, TG, LDL, VLDL, and HDL)], and cytokine (IL-2, IL-6, IL-10, and IL-1ß) markers in EC-induced LC in albino Wistar rats. Morphological examination (SEM and H&E) and western blotting (IL-6, STAT3, Cyt-C, BAX, Bcl-2, Caspase3, and caspase9) showed that compounds 9B and 12B had antiproliferative effects. Accordingly, from the in-vitro, in-silico, and in-vivo experimental findings, we concluded that 9B and 12B have significant antiproliferative potential and are potential candidates for further evaluation to meet the requirements of investigation of new drug application.

2.
ACS Omega ; 9(23): 25381-25389, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882167

RESUMO

This study aimed to develop a delivery system for the dried aqueous extract of Rubia cordifolia leaves (RCE) that could improve the neuroprotective potential of RCE by improving the bioavailability of the chief chemical constituent rubiadin. Rubiadin, an anthraquinone chemically, is a biomarker phytoconstituent of RCE. Rubiadin is reported to have strong antioxidant and neuroprotective activity but demonstrates poor bioavailability. In order to resolve the problem related to bioavailability, RCE and phospholipids were reacted in disparate ratios of 1:1, 1:2, and 1:3 to prepare phytosome formulations PC1, PC2, and PC3, respectively. The formulation PC2 showed particle size of 289.1 ± 0.21 nm, ζ potential of -6.92 ± 0.10 mV, entrapment efficiency of 72.12%, and in vitro release of rubiadin of 89.42% at pH 7.4 for a period up to 48 h. The oral bioavailability and neuroprotective potential of PC2 and RCE were assessed to evaluate the benefit of PC2 formulation over the crude extract RCE. Formulation PC2 showed a relative bioavailability of 134.14% with a higher neuroprotective potential and significantly (p < 0.05) augmented the nociceptive threshold against neuropathic pain induced by partial sciatic nerve ligation method. Antioxidant enzyme levels and histopathological studies of the sciatic nerves in various treatment groups significantly divulged that PC2 has enough potential to reverse the damaged nerves into a normal state. Finally, it was concluded that encapsulated RCE as a phytosome is a potential carrier system for enhancing the delivery of RCE for the efficient treatment of neuropathic pain.

3.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726798

RESUMO

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Assuntos
Apoptose , Neoplasias da Mama , Prolina Dioxigenases do Fator Induzível por Hipóxia , Humanos , Feminino , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Camundongos , Hipóxia Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Tirapazamina/farmacologia , Tirapazamina/química , Tirapazamina/metabolismo
4.
Heliyon ; 10(7): e29058, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623202

RESUMO

Anemia is a severe health issue that affects around one-third of the global population. Therefore, the present study aims to conduct a bibliometric analysis to investigate the research trends regarding advancements on iron formulations in treating iron deficiency anemia via oral or parenteral route. This study adopts thematic and bibliometric methods on existing research on novel iron formulations. It also provides perspective into the existing understanding on treatment strategies for iron deficiency anemia. This study is conducted on 543 papers on various ferrous and ferric formulations used in the treatment of iron deficiency anemia. The study period is from 1977 to 2022, and the papers are identified from the Scopus database. The bibliometric analysis was carried out using the R tool's Bibliometrix package. The study discusses performance analysis, including annual publications, geographic analysis, relevant affiliations, journal analysis, and citation analysis. In addition, the conceptual structure, including the co-occurrence network, thematic map, thematic evolution, intellectual structure highlighting co-citation analysis, and social structure depicting the collaboration network and collaboration world map, are presented. The results showed increased research on formulation strategies for the treatment of iron deficiency anemia from 2010 onwards. The top 5 contributing countries are the USA, Italy, India, Germany, and the UK, and peer-reviewed journals from the area of nutrition. The most trending areas of study are iron deficiency anemia in pregnancy, chronic kidney diseases, inflammatory bowel diseases, and various intravenous formulations used in its treatment. The authors from Europe collaborate the most with authors from other countries. The study concludes that a safer and more effective iron formulation is needed to reduce the prevalence of anemia. The findings of the study are helpful in advancing research on innovative formulations for treating iron deficiency anemia. The insights from the study are helpful to policymakers in designing specific health policies and investing more in research and development of novel formulations for the treatment of iron deficiency anemia.

5.
ACS Omega ; 9(12): 13534-13555, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559954

RESUMO

Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 µm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.

6.
J Biochem Mol Toxicol ; 38(4): e23679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486411

RESUMO

Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.


Assuntos
Antineoplásicos , Benzimidazóis , Carbocianinas , Carcinoma , Chalcona , Chalconas , Humanos , Prolil Hidroxilases , Chalconas/farmacologia , Antineoplásicos/farmacologia , Laranja de Acridina , Apoptose , Microambiente Tumoral
7.
ACS Omega ; 9(8): 8615-8631, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434844

RESUMO

Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.

8.
Pharmaceutics ; 16(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543191

RESUMO

Prostate cancer is one of the most life-threatening disorders that occur in males. It has now become the third most common disease all over the world, and emerging cases and spiking mortality rates are becoming more challenging day by day. Several approaches have been used to treat prostate cancer, including surgery, radiation therapy, chemotherapy, etc. These are painful and invasive ways of treatment. Primarily, chemotherapy has been associated with numerous drawbacks restricting its further application. The majority of prostate cancers have the potential to become castration-resistant. Prostate cancer cells exhibit resistance to chemotherapy, resistance to radiation, ADT (androgen-deprivation therapy) resistance, and immune stiffness as a result of activating tumor-promoting signaling pathways and developing resistance to various treatment modalities. Nanomedicines such as liposomes, nanoparticles, branched dendrimers, carbon nanotubes, and quantum dots are promising disease management techniques in this context. Nanomedicines can target the drugs to the target site and enhance the drug's action for a prolonged period. They may also increase the solubility and bioavailability of poorly soluble drugs. This review summarizes the current data on nanomedicines for the prevention and treatment of prostate cancer. Thus, nanomedicine is pioneering in disease management.

9.
Front Biosci (Landmark Ed) ; 29(2): 47, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420828

RESUMO

BACKGROUND: The leaves of Origanum majorana (O. majorana) are traditionally renowned for treating diarrhea and gut spasms. This study was therefore planned to evaluate its methanolic extract. METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the phytochemicals, and Swiss albino mice were used for an in vivo antidiarrheal assay. Isolated rat ileum was used as an ex vivo assay model to study the possible antispasmodic effect and its mechanism(s). RESULTS: The GC-MS analysis of O. majorana detected the presence of 21 compounds, of which alpha-terpineol was a major constituent. In the antidiarrheal experiment, O. majorana showed a substantial inhibitory effect on diarrheal episodes in mice at an oral dosage of 200 mg/kg, resulting in 40% protection. Furthermore, an oral dosage of 400 mg/kg provided even greater protection, with 80% effectiveness. Similarly, loperamide showed 100% protection at oral doses of 10 mg/kg. O. majorana caused complete inhibition of carbachol (CCh, 1 µM) and high K+ (80 mM)-evoked spasms in isolated ileal tissues by expressing significantly higher potency (p < 0.05) against high K+ compared to CCh, similar to verapamil, a Ca++ antagonist. The verapamil-like predominant Ca++ ion inhibitory action of O. majorana was further confirmed in the ileal tissues that were made Ca++-free by incubating the tissues in a physiological salt solution having ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The preincubation of O. majorana at increasing concentrations (0.3 and 1 mg/mL) shifted towards the right of the CaCl2-mediated concentration-response curves (CRCs) with suppression of the maximum contraction. Similarly, verapamil also caused non-specific suppression of Ca++ CRCs towards the right, as expected. CONCLUSIONS: Thus, this study conducted an analysis to determine the chemical constituents of the leaf extract of O. majorana and provided a detailed mechanistic basis for the medicinal use of O. majorana in hyperactive gut motility disorders.


Assuntos
Antidiarreicos , Origanum , Ratos , Camundongos , Animais , Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Antidiarreicos/química , Jejuno , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Óleo de Rícino/farmacologia , Óleo de Rícino/uso terapêutico , Diarreia/tratamento farmacológico , Verapamil/farmacologia , Verapamil/uso terapêutico , Canais de Cálcio , Espasmo/tratamento farmacológico
10.
Front Biosci (Landmark Ed) ; 29(1): 43, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287835

RESUMO

BACKGROUND: Medicinal herbs are frequently used for the management of gastrointestinal disorders because they contain various compounds that can potentially amplify the intended therapeutic effects. Cuminaldehyde is a plant-based constituent found in oils derived from botanicals such as cumin, eucalyptus, myrrh, and cassia and is responsible for its health benefits. Despite the utilization of cuminaldehyde for several medicinal properties, there is currently insufficient scientific evidence to support its effectiveness in treating diarrhea. Hence, the present investigation was carried out to evaluate the antidiarrheal and antispasmodic efficacy of cuminaldehyde, with detailed pharmacodynamics explored. METHODS: An in vivo antidiarrheal test was conducted in mice following the castor oil-induced diarrhea model, while an isolated small intestine obtained from rats was used to evaluate the detailed mechanism(s) of antispasmodic effects. RESULTS: Cuminaldehyde, at 10 and 20 mg/kg, exhibited 60 and 80% protection in mice from episodic diarrhea compared to the saline control group, whereas this inhibitory effect was significantly reversed in the pretreated mice with glibenclamide, similar to cromakalim, an ATP-dependent K+ channel opener. In the ex vivo experiments conducted in isolated rat tissues, cuminaldehyde reversed the glibenclamide-sensitive low K+ (25 mM)-mediated contractions at significantly higher potency compared to its inhibitory effect against high K+ (80 mM), thus showing predominant involvement of ATP-dependent K+ activation followed by Ca++ channel inhibition. Cromakalim, a standard drug, selectively suppressed the glibenclamide-sensitive low K+-induced contractions, whereas no relaxation was observed against high K+, as expected. Verapamil, a Ca++ channel inhibitor, effectively suppressed both low and high K+-induced contractions with similar potency, as anticipated. At higher concentrations, the inhibitory effect of cuminaldehyde against Ca++ channels was further confirmed when the preincubated ileum tissues with cuminaldehyde (3 and 10 mM) in Ca++ free medium shifted CaCl2-mediated concentration-response curves (CRCs) towards the right with suppression of the maximum peaks, similar to verapamil, a standard Ca++ ion inhibitor. CONCLUSIONS: Present findings support the antidiarrheal and antispasmodic potential of cuminaldehyde, possibly by the predominant activation of ATP-dependent K+ channels followed by voltage-gated Ca++ inhibition. However, further in-depth assays are recommended to know the precise mechanism and to elucidate additional unexplored mechanism(s) if involved.


Assuntos
Antidiarreicos , Benzaldeídos , Cimenos , Parassimpatolíticos , Ratos , Camundongos , Animais , Antidiarreicos/efeitos adversos , Parassimpatolíticos/efeitos adversos , Cromakalim/efeitos adversos , Glibureto/efeitos adversos , Extratos Vegetais/farmacologia , Jejuno , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Verapamil/efeitos adversos , Trifosfato de Adenosina
11.
Saudi Pharm J ; 31(7): 1274-1293, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37304359

RESUMO

Postpartum depression (PPD) is a challenging psychological disorder faced by 10-30% of mothers across the globe. In India, it occurs among 22% of mothers. Its aetiology and pathophysiology aren't fully understood as of today but multiple theories on the interplay of hormones, neurotransmitters, genetics, epigenetics, nutrients, socio-environmental factors, etc. exist. Nutrients are not only essential for the synthesis of neurotransmitters, but they may also indirectly influence genomic pathways that methylate DNA, and there is evidence for molecular associations between nutritional quality and psychological well-being. Increased behavioural disorders have been attributed to macro- and micronutrient deficiencies, and dietary supplementation has been effective in treating several neuropsychiatric illnesses. Nutritional deficiencies occur frequently in women, especially during pregnancy and breastfeeding. The aim of this study was to perform a comprehensive literature review of evidence-based research in order to identify, gather and summarize existing knowledge on PPD's aetiology, pathophysiology, and the role of nutrients in its prevention as well as management. The possible mechanisms of action of nutrients are also presented here. Study findings show that the risk of depression increases when omega-3 fatty acid levels are low. Both fish oil and folic acid supplements have been used to effectively treat depression. Antidepressant efficacy is lowered by folate insufficiency. Folate, vitamin B12, iron, etc. deficiencies are more prevalent in depressed people than in non-depressed people. Serum cholesterol levels and plasma tryptophan levels are found to be inversely correlated with PPD. Serum vitamin D levels were associated inversely with perinatal depression. These findings highlight the importance of adequate nutrition in the antepartum period. Given that nutritional therapies can be affordable, safe, simple to use, and are typically well-accepted by patients, more focus should be placed on dietary variables in PPD.

12.
3 Biotech ; 13(5): 151, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37131965

RESUMO

Antibiotics and immunotherapies possess unavoidable adverse effects that hinder sepsis management. Herbal drugs have demonstrated potential immunomodulatory properties vital for sepsis treatment. We hypothesized in the present study that the use of Carica papaya leaves extract had the potential to improve survival and modulate immune cytokine release during sepsis. Animals were subjected to cecal ligation and puncture (CLP) to induce sepsis. Septic rats divided into 10 groups received ethanol extract of C. papaya leaves (50 and 100 mg/kg), imipenem (120 mg/kg) and cyclophosphamide (CP, 10 mg/kg). To investigate the immunomodulatory potentials of EE, cytokine levels like interleukin (IL-6), tumor necrosis factor (TNF-α), and IL-10 along with hematological and biochemical parameters were analyzed. Our results exhibited improved survival rates concerning ethanol extract treatment alone and in combination with imipenem and CP (100%) as compared to the CLP group (33.3%) on day 7 post-surgery. The combination treatment of ethanol extract with imipenem and CP significantly (P < 0.001) ameliorated cytokine levels and hematological and biochemical parameters in septic rats. A histopathological examination suggested improved liver and kidney tissue condition after combination treatment as compared to the CLP group. Therefore, it was concluded that combination therapy of extract with imipenem and CP improved survival rates and marked immunomodulatory potential in septic rats compared to monotherapy. The findings suggested the use of a mixture of these drugs in clinical settings to treat sepsis.

13.
Int J Biol Macromol ; 242(Pt 1): 124581, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105251

RESUMO

Sirtuins or Sir (Silent information regulator) are NAD+-dependent enzymes playing an important part in the pathogenesis and treatment of various disorders. They have ubiquitously expressed protein deacetylases. They are implicated in several cellular activities like DNA repair, cellular metabolism, mitochondrial function, and inflammation. Deletion of sirtuin protein, SIRT1 in the organs like brain, heart, liver and pancreas can cause inflammation and increases the level of free radical ions causing oxidative stress. Inflammation and oxidative stress are closely associated with pathophysiological events in many chronic diseases, like diabetes, cancer, cardiovascular, osteoporosis, and neurodegenerative diseases. Modulation of SIRT1 gene expression might help in preventing the progression of chronic diseases related to the brain, heart, liver, and pancreas. SIRT2 proteins play an essential role in tumorigenesis, including tumor-suppressing and tumor-promoting functions. Sirtuin activators are molecules that upregulate the activity of Sirtuins in the body. Their multifaceted uses have surprised the global scientific community. They are found to control obesity, lower cardiac risks, battle cancer, etc. This article provides an update on the pharmacological effect of SIRT1 and SIRT 2 proteins, their activators and inhibitors, and their molecular mechanism. It provides novel insights for future research in targeted therapy and drug development.


Assuntos
Neoplasias , Sirtuína 1 , Humanos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Estresse Oxidativo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo
14.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111672

RESUMO

The anti-inflammatory drugs that are generally available possess the disadvantage of hydrophobicity, which leads to poor permeability and erratic bioavailability. Nanoemulgels (NEGs) are novel drug delivery systems that aim to improve the solubility and permeability of drugs across the biological membrane. The nano-sized droplets in the nanoemulsion enhance the permeation of the formulation, along with surfactants and co-surfactants that act as permeation enhancers and can further improve permeability. The hydrogel component of NEG helps to increase the viscosity and spreadability of the formulation, making it ideal for topical application. Moreover, oils that have anti-inflammatory properties, such as eucalyptus oil, emu oil and clove oil, are used as oil phases in the preparation of the nanoemulsion, which shows a synergistic effect with active moiety and enhances its overall therapeutic profile. This leads to the creation of hydrophobic drugs that possess enhanced pharmacokinetic and pharmacodynamic properties, and simultaneously avoid systemic side effects in individuals with external inflammatory disorders. The nanoemulsion's effective spreadability, ease of application, non-invasive administration, and subsequent ability to achieve patient compliance make it more suitable for topical application in the combat of many inflammatory disorders, such as dermatitis, psoriasis, rheumatoid arthritis, osteoarthritis and so on. Although the large-scale practical application of NEG is limited due to problems regarding its scalability and thermodynamic instability, which arise from the use of high-energy approaches during the production of the nanoemulsion, these can be resolved by the advancement of an alternative nanoemulsification technique. Considering the potential advantages and long-term benefits of NEGs, the authors of this paper have compiled a review that elaborates the potential significance of utilizing nanoemulgels in a topical delivery system for anti-inflammatory drugs.

15.
Pharmaceutics ; 15(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36986610

RESUMO

Neurodegenerative disorders encompass a wide range of pathological conditions caused by progressive damage to the neuronal cells and nervous-system connections, which primarily target neuronal dysfunction and result in problems with mobility, cognition, coordination, sensation, and strength. Molecular insights have revealed that stress-related biochemical alterations such as abnormal protein aggregation, extensive generation of reactive oxygen and nitrogen species, mitochondrial dysfunction, and neuroinflammation may lead to damage to neuronal cells. Currently, no neurodegenerative disease is curable, and the available standard therapies can only provide symptomatic treatment and delay the progression of the disease. Interestingly, plant-derived bioactive compounds have drawn considerable attention due to their well-established medicinal properties, including anti-apoptotic, antioxidant, anti-inflammatory, anticancer, and antimicrobial properties, as well as neuroprotective, hepatoprotective, cardioprotective, and other health benefits. Plant-derived bioactive compounds have received far more attention in recent decades than synthetic bioactive compounds in the treatment of many diseases, including neurodegeneration. By selecting suitable plant-derived bioactive compounds and/or plant formulations, we can fine tune the standard therapies because the therapeutic efficacy of the drugs is greatly enhanced by combinations. A plethora of in vitro and in vivo studies have demonstrated plant-derived bioactive compounds' immense potential, as proven by their capacity to influence the expression and activity of numerous proteins implicated in oxidative stress, neuroinflammation, apoptosis, and aggregation. Thus, this review mostly focuses on the antioxidant, anti-inflammatory, anti-aggregation, anti-cholinesterase, and anti-apoptotic properties of several plant formulations and plant-derived bioactive compounds and their molecular mechanisms against neurodegenerative disorders.

16.
Front Pharmacol ; 14: 1108915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891273

RESUMO

Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.

17.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677632

RESUMO

Sepsis is a serious health concern globally, which necessitates understanding the root cause of infection for the prevention of proliferation inside the host's body. Phytochemicals present in plants exhibit antibacterial and anti-proliferative properties stipulated for sepsis treatment. The aim of the study was to determine the potential role of Carica papaya leaf extract for sepsis treatment in silico and in vitro. We selected two phytochemical compounds, carpaine and quercetin, and docked them with bacterial proteins, heat shock protein (PDB ID: 4PO2), surfactant protein D (PDB ID: 1PW9), and lactobacillus bacterial protein (PDB ID: 4MKS) against imipenem and cyclophosphamide. Quercetin showed the strongest interaction with 1PW9 and 4MKS proteins. The leaves were extracted using ethanol, methanol, and water through Soxhlet extraction. Total flavonoid content, DPPH assay, HPTLC, and FTIR were performed. In vitro cytotoxicity of ethanol extract was screened via MTT assay on the J774 cell line. Ethanol extract (EE) possessed the maximum number of phytocomponents, the highest amount of flavonoid content, and the maximum antioxidant activity compared to other extracts. FTIR analysis confirmed the presence of N-H, O-H, C-H, C=O, C=C, and C-Cl functional groups in ethanol extract. Cell viability was highest (100%) at 25 µg/mL of EE. The present study demonstrated that the papaya leaves possessed antibacterial and cytotoxic activity against sepsis infection.


Assuntos
Carica , Sepse , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas de Bactérias , Carica/química , Simulação de Acoplamento Molecular , Quercetina , Antibacterianos/farmacologia , Compostos Fitoquímicos/análise , Flavonoides , Etanol , Sepse/tratamento farmacológico , Folhas de Planta/química
18.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558012

RESUMO

The study was performed to assess and rationalize the traditional utilization of the fruit part of Grewia tenax (G. tenax). The phytoconstituents present in the methanolic extract were analyzed using Gas-Chromatography-Mass Spectroscopy (GC-MS), while the anti-diarrheal activity was investigated in the Swiss albino mice against castor oil-provoked diarrhea in vivo. The antispasmodic effect and the possible pharmacodynamics of the observed antispasmodic effect were determined in an isolated rat ileum using the organ bath setup as an ex vivo model. GC-MS findings indicate that G. tenax is rich in alcohol (6,6-dideutero-nonen-1-ol-3) as the main constituent (20.98%), while 3-Deoxy-d-mannoic lactone (15.36%) was detected as the second major constituents whereas methyl furfural, pyranone, carboxylic acid, vitamin E, fatty acid ester, hydrocarbon, steroids, sesquiterpenes, phytosterols, and ketones were verified as added constituents in the methanolic extract. In mice, the orally administered G. tenax inhibited the diarrheal episodes significantly (p < 0.05) at 200 mg/kg (40% protection), and this protection was escalated to 80% with the next higher dose of 400 mg/kg. Loperamide (10 mg/kg), a positive control drug, imparted 100% protection, whereas no protection was shown by saline. In isolated rat ileum, G. tenax completely inhibited the carbamylcholine (CCh; 1 µM) and KCl (high K+; 80 mM)-evoked spasms in a concentrations-mediated manner (0.03 to 3 mg/mL) by expressing equal potencies (p > 0.05) against both types of evoked spasms, similar to papaverine, having dual inhibitory actions at phosphodiesterase enzyme (PDE) and Ca2+ channels (CCB). Similar to papaverine, the inhibitory effect of G. tenax on PDE was further confirmed indirectly when G. tenax (0.1 and 0.3 mg/mL) preincubated ileal tissues shifted the isoprenaline-relaxation curve towards the left. Whereas, pre-incubating the tissue with 0.3 and 1 mg/mL of G. tenax established the CCB-like effect by non-specific inhibition of CaCl2−mediated concentration-response curves towards the right with suppression of the maximum peaks, similar to verapamil, a standard CCB. Thus, the present investigation revealed the phytochemical constituents and explored the detailed pharmacodynamic basis for the curative use of G. tenax in diarrhea and hyperactive gut motility disorders.


Assuntos
Grewia , Parassimpatolíticos , Ratos , Camundongos , Animais , Parassimpatolíticos/química , Antidiarreicos/química , Papaverina/farmacologia , Jejuno , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Diarreia/tratamento farmacológico , Diester Fosfórico Hidrolases/farmacologia , Espasmo
19.
Pharmaceutics ; 14(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36559067

RESUMO

This study systematically reviews and characterizes the existing literature on transferrin/transferrin receptor-mediated drug delivery. Transferrin is an iron-binding protein. It can be used as a ligand to deliver various proteins, genes, ions, and drugs to the target site via transferrin receptors for therapeutic or diagnostic purposes via transferrin receptors. This study is based on a cross-sectional bibliometric analysis of 583 papers limited to the subject areas of pharmacology, toxicology, and pharmaceutics as extracted from the Scopus database in mid-September 2022. The data were analyzed, and we carried out a performance analysis and science mapping. There was a significant increase in research from 2018 onward. The countries that contributed the most were the USA and China, and most of the existing research was found to be from single-country publications. Research studies on transferrin/transferrin receptor-mediated drug delivery focus on drug delivery across the blood-brain barrier in the form of nanoparticles. The thematic analysis revealed four themes: transferrin/transferrin receptor-mediated drug delivery to the brain, cancer cells, gene therapy, nanoparticles, and liposomes as drug delivery systems. This study is relevant to academics, practitioners, and decision makers interested in targeted and site-specific drug delivery.

20.
Metabolites ; 12(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36144222

RESUMO

The ability of microorganisms to detoxify xenobiotic compounds allows them to thrive in a toxic environment using carbon, phosphorus, sulfur, and nitrogen from the available sources. Biotransformation is the most effective and useful metabolic process to degrade xenobiotic compounds. Microorganisms have an exceptional ability due to particular genes, enzymes, and degradative mechanisms. Microorganisms such as bacteria and fungi have unique properties that enable them to partially or completely metabolize the xenobiotic substances in various ecosystems.There are many cutting-edge approaches available to understand the molecular mechanism of degradative processes and pathways to decontaminate or change the core structure of xenobiotics in nature. These methods examine microorganisms, their metabolic machinery, novel proteins, and catabolic genes. This article addresses recent advances and current trends to characterize the catabolic genes, enzymes and the techniques involved in combating the threat of xenobiotic compounds using an eco-friendly approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...