Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutat Res Rev Mutat Res ; 780: 92-105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31395353

RESUMO

DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain genomic integrity. DNA-PK also plays a central role in immune cell development and protects telomerase during cellular aging. Epigenetic deregulation due to endogenous and exogenous factors may affect the normal function of DNA-PK, which in turn could impair DNA repair and contribute to genomic instability. Recent studies implicate a role for epigenetics in the regulation of DNA-PK expression in normal and cancer cells, which may impact cancer progression and metastasis as well as provide opportunities for treatment and use of DNA-PK as a novel cancer biomarker. In addition, several small molecules and biological agents have been recently identified that can inhibit DNA-PK function or expression, and thus hold promise for cancer treatments. This review discusses the impact of epigenetic alterations and the expression of DNA-PK in relation to the DNA repair mechanisms with a focus on its differential levels in normal and cancer cells.


Assuntos
Proteína Quinase Ativada por DNA/genética , Epigênese Genética/genética , Instabilidade Genômica/genética , Neoplasias/genética , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA/genética , Humanos
2.
J Biol Chem ; 294(37): 13681-13696, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31341019

RESUMO

The triple-negative phenotype is the most prevalent form of human breast cancer worldwide and is characterized by poor survival, high aggressiveness, and recurrence. Microvesicles (MV) are shredded plasma membrane components and critically mediate cell-cell communication, but can also induce cancer proliferation and metastasis. Previous studies have revealed that protease-activated receptor 2 (PAR2) contributes significantly to human triple-negative breast cancer (TNBC) progression by releasing nano-size MV and promoting cell proliferation, migration, and invasion. MV isolated from highly aggressive human TNBC cells impart metastatic potential to nonmetastatic cells. Over-expression of microRNA221 (miR221) has also been reported to enhance the metastatic potential of human TNBC, but miR221's relationship to PAR2-induced MV is unclear. Here, using isolated MV, immunoblotting, quantitative RT-PCR, FACS analysis, and enzymatic assays, we show that miR221 is translocated via human TNBC-derived MV, which upon fusion with recipient cells, enhance their proliferation, survival, and metastasis both in vitro and in vivo by inducing the epithelial-to-mesenchymal transition (EMT). Administration of anti-miR221 significantly impaired MV-induced expression of the mesenchymal markers Snail, Slug, N-cadherin, and vimentin in the recipient cells, whereas restoring expression of the epithelial marker E-cadherin. We also demonstrate that MV-associated miR221 targets phosphatase and tensin homolog (PTEN) in the recipient cells, followed by AKT Ser/Thr kinase (AKT)/NF-κB activation, which promotes EMT. Moreover, elevated miR221 levels in MV derived from human TNBC patients' blood could induce cell proliferation and metastasis in recipient cells. In summary, miR221 transfer from TNBC cells via PAR2-derived MV induces EMT and enhances the malignant potential of recipient cells.


Assuntos
Micropartículas Derivadas de Células/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Micropartículas Derivadas de Células/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/genética
3.
Inflammopharmacology ; 27(5): 863-869, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309484

RESUMO

The failure of mechanisms of natural anti-coagulation either due to genetic impairment or due to severe external injuries may result in a condition called thrombosis. This is believed to be the primary cause for a variety of life-threatening conditions such as: heart attack, stroke, pulmonary embolism, thrombophlebitis, and deep venous thrombosis (DVT). The growing number of these incidents requires an alternative anti-coagulant or anti-thrombotic agent that has minimal side effects and improved efficiency. For decades, plant polyphenols, especially flavonoids, were known for their vital role in preventing various diseases such as cancer. Mitigating excessive oxidative stress caused by reactive oxygen species (ROS) with anti-oxidant-rich flavonoids may reduce the risk of hyper-activation of platelets, cardiovascular diseases (CVD), pain, and thrombosis. Furthermore, flavonoids may mitigate endothelial dysfunction (ED), which generally correlates to the development of coronary artery and vascular diseases. Flavonoids also reduce the risk of atherosclerosis and atherothrombotic disease by inhibiting excessive tissue factor (TF) availability in the endothelium. Although the role of flavonoids in CVD is widely discussed, to the best of our knowledge, their role as anti-thrombotic lead has not been discussed. This review aims to focus on the biological uses of dietary flavonoids and their role in the treatment of various coagulation disorders, and may provide some potential lead to the drug discovery process in this area.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológico , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trombose/metabolismo
4.
Biomed Pharmacother ; 105: 395-406, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29870887

RESUMO

AIMS: Cell invasion is attributed to the synthesis and secretion of proteolytically active matrix-metalloproteinases (MMPs) by tumor cells to degrade extracellular matrix (ECM) and promote metastasis. The role of protease-activated receptor 2 (PAR2) in human breast cancer migration/invasion via MMP-2 up-regulation remains ill-defined; hence we investigated whether TF-FVIIa/trypsin-mediated PAR2 activation induces MMP-2 expression in human breast cancer. MAIN METHODS: MMP-2 expression and the signaling mechanisms were analyzed by western blotting and RT-PCR. MMP-2 activity was measured by gelatin zymography. Cell invasion was analyzed by transwell invasion assay whereas; wound healing assay was performed to understand the cell migratory potential. KEY FINDINGS: Here, we highlight that TF-FVIIa/trypsin-mediated PAR2 activation leads to enhanced MMP-2 expression in human breast cancer cells contributing to tumor progression. Knock-down of PAR2 abrogated TF-FVIIa/trypsin-induced up-regulation of MMP-2. Again, genetic manipulation of AKT or inhibition of NF-ĸB suggested that PAR2-mediated enhanced MMP-2 expression is dependent on the PI3K-AKT-NF-ĸB pathway. We also reveal that TF, PAR2, and MMP-2 are over-expressed in invasive breast carcinoma tissues as compared to normal. Knock-down of MMP-2 significantly impeded TF-FVIIa/trypsin-induced cell invasion. Further, we report that MMP-2 activates p38 MAPK-MK2-HSP27 signaling axis that leads to actin polymerization and induces cell migration. Pharmacological inhibition of p38 MAPK or MK2 attenuates MMP-2-induced cell migration. SIGNIFICANCE: The study delineates a novel signaling pathway by which PAR2-induced MMP-2 expression regulates human breast cancer cell migration/invasion. Understanding these mechanistic details will certainly help to identify crucial targets for therapeutic interventions in breast cancer metastasis.


Assuntos
Comunicação Autócrina , Coagulação Sanguínea , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Progressão da Doença , Fator VIIa/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Tripsina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais , Tromboplastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...