Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627264

RESUMO

Cryptosporidium parvum is a zoonotic-relevant parasite belonging to the phylum Alveolata (subphylum Apicomplexa). One of the most zoonotic-relevant etiologies of cryptosporidiosis is the species C. parvum, infecting humans, cattle and wildlife. C. parvum-infected intestinal mucosa as well as host cells infected in vitro have not yet been the subject of extensive biochemical investigation. Efficient treatment options or vaccines against cryptosporidiosis are currently not available. Human cryptosporidiosis is currently known as a neglected poverty-related disease (PRD), being potentially fatal in young children or immunocompromised patients. In this study, we used a combination of atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) mass spectrometry imaging (MSI) and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to determine and locate molecular biomarkers in in vitro C. parvum-infected host cells as well as parasitized neonatal calf intestines. Sections of C. parvum-infected and non-infected host cell pellets and infected intestines were examined to determine potential biomarkers. Human ileocecal adenocarcinoma cells (HCT-8) were used as a suitable in vitro host cell system. More than a thousand different molecular signals were found in both positive- and negative-ion mode, which were significantly increased in C. parvum-infected material. A database search in combination with HPLC-MS/MS experiments was employed for the structural verification of markers. Our results demonstrate some overlap between the identified markers and data obtained from earlier studies on other apicomplexan parasites. Statistically relevant biomarkers were imaged in cell layers of C. parvum-infected and non-infected host cells with 5 µm pixel size and in bovine intestinal tissue with 10 µm pixel size. This allowed us to substantiate their relevance once again. Taken together, the present approach delivers novel metabolic insights on neglected cryptosporidiosis affecting mainly children in developing countries.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criança , Humanos , Animais , Bovinos , Pré-Escolar , Espectrometria de Massas em Tandem , Diagnóstico por Imagem
2.
Anal Sci Adv ; 3(7-8): 244-254, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38716083

RESUMO

Neospora caninum is an obligate intracellular protozoan parasite of the phylum Alveolata (subphylum Apicomplexa) which has not been studied extensively in a biochemical context. N. caninum is a primary cause of reproductive disorders causing mummification and abortion not only in cattle but also in other small ruminant species resulting in a substantial economic impact on the livestock industry. In canids, which are the final hosts of N. caninum, clinical disease includes neuromuscular symptoms, ataxia, and ascending paralysis. Fatal outcomes of neosporosis have also been reported depending on the host species, age and immune status, however, its zoonotic potential is still uncertain. Therefore, N. caninum should be thoroughly investigated. Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) and MS imaging (MSI) were used, combined with high-performance liquid chromatography (HPLC) to investigate these intracellular parasites. The aim of this study was to identify molecular biomarkers for N. caninum tachyzoite-infected host cells and to further clarify their functions. By atmospheric-pressure scanning microprobe MALDI MS(I), sections of N. caninum-infected and non-infected host cell pellets were examined in order to determine potential markers. In vivo, N. caninum infects different types of nucleated cells, such as endothelial cells which represent a highly immunoreactive cell type. Therefore, primary bovine umbilical vein endothelial cells were here used as a suitable infection system. For comparison, the permanent MARC-145 cell line was used as an additional, simplified in vitro cell culture model. HPLC-tandem MS (HPLC-MS/MS) experiments combined with database search were employed for structural verification of markers. The statistically relevant biomarkers found by MS and identified by HPLC-MS/MS measurements were partly also found in infected monolayers. Marker signals were imaged in cell layers of N. caninum-infected and non-infected host cells at 5 µm lateral resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...