Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 118(6): 2643-2655, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25821662

RESUMO

Shipborne aerosol lidar observations were performed aboard the research vessel Polarstern in 2009 and 2010 during three north-south cruises from about 50°N to 50°S. The aerosol data set provides an excellent opportunity to characterize and contrast the vertical aerosol distribution over the Atlantic Ocean in the polluted northern and relatively clean southern hemisphere. Three case studies, an observed pure Saharan dust plume, a Patagonian dust plume east of South America, and a case of a mixed dust/smoke plume west of Central Africa are exemplarily shown and discussed by means of their optical properties. The meridional transatlantic cruises were used to determine the latitudinal cross section of the aerosol optical thickness (AOT). Profiles of particle backscatter and extinction coefficients are presented as mean profiles for latitudinal belts to contrast northern- and southern-hemispheric aerosol loads and optical effects. Results of lidar observations at Punta Arenas (53°S), Chile, and Stellenbosch (34°S), South Africa, are shown and confirm the lower frequency of occurrence of free-tropospheric aerosol in the southern hemisphere than in the northern hemisphere. The maximum latitudinal mean AOT of 0.27 was found in the northern tropics (0- 15°N) in the Saharan outflow region. Marine AOT is typically 0.05 ± 0.03. Particle optical properties are presented separately for the marine boundary layer and the free troposphere. Concerning the contrast between the anthropogenically influenced midlatitudinal aerosol conditions in the 30- 60°N belt and the respective belt in the southern hemisphere over the remote Atlantic, it is found that the AOT and extinction coefficients for the vertical column from 0-5km (total aerosol column) and 1-5km height (lofted aerosol above the marine boundary layer) are a factor of 1.6 and 2 higher at northern midlatitudes than at respective southern midlatitudes, and a factor of 2.5 higher than at the clean marine southern-hemispheric site of Punta Arenas. The strong contrast is confined to the lowermost 3km of the atmosphere.

2.
Appl Opt ; 39(12): 1879-92, 2000 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18345084

RESUMO

We present effective radius, volume, surface-area, and number concentrations as well as mean complex refractive index of tropospheric particle size distributions based on lidar measurements at six wavelengths. The parameters are derived by means of an inversion algorithm that has been specifically designed for the inversion of available optical data sets. The data were taken on 20 June and on 20 July 1997 during the Aerosol Characterization Experiment ACE 2 (North Atlantic/Portugal) and on 9 August 1998 during the Lindenberg Aerosol Characterization Experiment LACE 98 (Lindenberg/Germany). Measurements on 20 June 1997 were taken in a clean-marine boundary layer, and a large value of 0.64 microm for the effective radius, a low value of 1.45 for the real part, and a negligible imaginary part of the complex refractive index were found. The single-scatter albedo was 0.98 at 532 nm. It was derived from the particle parameters with Mie-scattering calculations. In contrast, the particles were less than 0.2 microm in effective radius in a continental-polluted aerosol layer on 20 July 1997. The real part of the complex refractive index was approximately 1.6; the imaginary part showed values near 0.03i. The single-scatter albedo was 0.84. On 9 August 1998 an elevated particle layer located from 3000 to 6000 m was observed, which had originated from an area of biomass burning in northwestern Canada. Here the effective radius was approximately 0.24 mum, the real part of the complex refractive index was above 1.6, the imaginary part was approximately 0.04i, and the single-scatter albedo was 0.81. Excellent agreement has been found with results based on sunphotometer and in situ measurements that were performed during the field campaigns.

3.
Appl Opt ; 38(12): 2346-57, 1999 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18319800

RESUMO

A method is proposed that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index on a routine basis from backscatter and extinction coefficients at multiple wavelengths. The optical data in terms of vertical profiles are derived from multiple-wavelength lidar measurements at 355, 400, 532, 710, 800, and 1064 nm for backscatter data and 355 and 532 nm for extinction data. The algorithm is based on the concept of inversion with regularization. Regularization is performed by generalized cross-validation. This method does not require knowledge of the shape of the particle size distribution and can handle measurement errors of the order of 20%. It is shown that at least two extinction data are necessary to retrieve the particle parameters to an acceptable accuracy. Simulations with monomodal and bimodal logarithmic-normal size distributions show that it is possible to derive effective radius, volume, and surface-area concentrations to an accuracy of +/-50%, the real part of the complex refractive index to +/-0.05, and the imaginary part to +/-50%. Number concentrations may have errors larger than +/-50%.

4.
Appl Opt ; 38(12): 2358-68, 1999 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18319801

RESUMO

A sensitivity study with an inversion scheme that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index from backscatter and extinction coefficients at multiple wavelengths is presented. The optical data for the analysis are derived from Mie-scattering calculations for monomodal and bimodal logarithmic-normal distributions in the particle size range between 0.01 and 10 microm. The complex refractive index is taken between 1.33 and 1.8 in the real part and between 0 and 0.1 in the imaginary part. The choice of these parameters takes account of properties of optically active atmospheric particles. The wavelengths were chosen at 355, 400, 532, 710, 800, and 1064 nm for the backscatter and at 355 and 532 nm for the extinction data, which are the available wavelengths of the two lidar systems at the Institute for Tropospheric Research. Cases of erroneous optical data of the order of as much as 20%, an unknown refractive index, which may also be wavelength and size dependent, as well as the a priori unknown modality of the particle size distribution were considered. It is shown that both extinction channels are necessary for determining the above-mentioned parameters within reasonable limits, i.e., effective radius, surface-area, and volume concentrations to an accuracy of +/-50%, the real part of the complex refractive index to +/-0.1, and the imaginary part to +/-50%. The number concentration may have errors larger than 50%. The overall performance of the inversion scheme permits the evaluation of experimental data on a routine basis.

5.
Appl Opt ; 37(12): 2260-3, 1998 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18273150

RESUMO

Tropospheric height profiles of five particle backscatter coefficients between 355 and 800 nm and particle extinction coefficients at 355 and 532 nm measured with a multiple-wavelength backscatter lidar and a dual-wavelength Raman lidar are presented. From these data microphysical particle parameters are determined by a specifically designed inversion algorithm.

6.
Appl Opt ; 34(36): 8315-29, 1995 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21068952

RESUMO

An algorithm that permits the retrieval of profiles of particle mass and surface-area concentrations in the stratospheric aerosol layer from independently measured aerosol (particle and Rayleigh) and molecule (Raman or Rayleigh) backscatter signals is developed. The determination is based on simultaneously obtained particle extinction and backscatter profiles and on relations between optical and microphysical properties found from Mie-scattering calculations for realistic stratospheric particle size distributions. The size distributions were measured with particle counters released on balloons from Laramie, Wyoming, between June 1991 and April 1994. Mass and surface-area concentrations can be retrieved with relative errors of 10-20% and 20-40%, respectively, with a laser wavelength of 355 nm and with errors of 20-30% and 30-60%, respectively, with a laser wavelength of 308 nm. Lidar measurements taken within the first three years after the eruption of Mt. Pinatubo in June 1991 are shown. Surface-area concentrations around 20 µm(2) cm(-3) and mass concentrations of 3 to 6 µg m(-3) were found until spring 1993.

7.
Appl Opt ; 33(24): 5671-3, 1994 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20935967

RESUMO

The nitrogen Raman depolarization ratio is measured with a lidar. The measurements show how a lidar profile of cloud parameters is affected by multiple scattering.

8.
Appl Opt ; 31(33): 7113, 1992 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20802574

RESUMO

Height profiles of the extinction and the backscatter coefficients in cirrus clouds are determined independently from elastic- and inelastic- (Raman) backscatter signals. An extended error analysis is given. Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented. Lidar ratios between 5 and 15 sr are usually found. A strong variation between 2 and 20 sr can be observed within one cloud profile. Particle extinction coefficients determined from inelastic-backscatter signals and from elastic-backscatter signals by using the Klett method are compared. The Klett solution of the extinction profile can be highly erroneous if the lidar ratio varies along the measuring range. On the other hand, simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.

9.
Opt Lett ; 15(13): 746-8, 1990 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19768066

RESUMO

A method is presented that permits the determination of atmospheric aerosol extinction profiles from measured Raman lidar signals. No critical input parameters are needed, which could cause large uncertainties of the solution, as is the case in the Klett method for the inversion of elastic lidar returns.

10.
Appl Opt ; 26(15): 3026-32, 1987 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20490005

RESUMO

An evaluation scheme is given to calculate the water vapor content from data obtained by differential absorption lidar (DIAL), taking into account that the Rayleigh scattered part of the return signal shows considerable spectral broadening in contrast to the Mie scattered part. To correct for errors caused by this effect, information on the aerosol backscattering properties is necessary. Sensitivity analysis performed by model calculations show that it can be retrieved with sufficient accuracy from the off-line signal in the same way as for backscatter lidar. It can be expected that water vapor retrieval will be possible with good accuracy even in the most critical cases, where steep gradients in aerosol backscattering exist in the upper troposphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...