Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 12100-12112, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635878

RESUMO

Two (BE)8-[16]annulenes were prepared and fully characterized by experimental and quantum-chemical means (1, E = N; 2, E = O). The 1,8-naphthalenediyl-bridged diborane(6) 3 served as their common starting material, which was treated with [Al(NH3)6]Cl3 to form 1 (91% yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93% yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic "clamps" and may also be viewed as NH- or O-bridged cyclic tetramers of BNB- or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetraadducts 2·thf, 2·py2, and 2·py4 showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag+ complex [Ag(py)2(2·py4)]+ and the dinuclear Pb2+ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)9-macrocycles linked by two BOB-phenalenyls to form a nanometer-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclic voltammograms. An in-depth assessment of the consequences of electron injection on the aromaticity of 1 and 2 was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.

2.
Chemphyschem ; 25(7): e202300791, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38279875

RESUMO

Optoelectronic properties of organic molecules are underpinned by delocalisation and delocalisability of π-electrons. These properties are sensitive to small changes in electron count, whether achieved by heteroatom substitution or redox chemistry. One measure of the delocalisability of π-electrons is the current induced by an external magnetic field, which is diagnostic of (anti)aromaticity. The ab initio ipsocentric method is used here to model diverse ring-current patterns in the family of [8]-circulenes based on tetracyclopenta[def,jkl,pqr,vwx]tetraphenylene (TCPTP), in different charge states, with disjoint hetero-atom substitution, and with CC units systematically replaced by BN pairs. Maps calculated at the CHF/CTOCD-DZ2/6-31G** level reveal that these modifications of the TCPTP framework access the full range of possibilities for current from concentric global circulations (typically counter rotating) to full (non-aromatic) localisation. In the ipsocentric approach, induced current density is partitioned into robust orbital contributions that obey selection rules based on orbital symmetry, energy and nodal character. The selection rules are applied here to interpret current-density and exploit insights gained from simpler models to suggest design strategies for fine-tuning of π-delocalisability (aromaticity and antiaromaticity) in macrocyclic frameworks.

3.
Phys Chem Chem Phys ; 25(44): 30697-30707, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934009

RESUMO

Flavin mononucleotide (FMN) is a highly versatile biological chromophore involved in a range of biochemical pathways including blue-light sensing proteins and the control of circadian rhythms. Questions exist about the effect of local amino acids on the electronic properties and photophysics of the chromophore. Using gas-phase anion laser photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (3.1-5.7 eV) and accompanying photodissociative decay pathways of the native deprotonated form of FMN, i.e. [FMN-H]- complexed with the amino acids tryptophan (TRP) and glutamic acid (GLU), i.e. [FMN-H]-·TRP and [FMN-H]-·GLU, to investigate the extent to which these amino acids perturb the electronic properties and photodynamics of the [FMN-H]- chromophore. The overall photodepletion profiles of [FMN-H]-·TRP and [FMN-H]-·GLU are similar to that of the monomer, revealing that amino acid complexation occurs without significant spectral shifting of the [FMN-H]- electronic excitations over this region. Both [FMN-H]-·TRP and [FMN-H]-·GLU are observed to decay by non-statistical photodecay pathways, although the behaviour of [FMN-H]-·TRP is closer to statistical fragmentation. Long-lived FMN excited states (triplet) are therefore relatively quenched when TRP binds to [FMN-H]-. Importantly, we find that [FMN-H]-, [FMN-H]-·TRP and [FMN-H]-·GLU all decay predominantly via electron detachment following photoexcitation of the flavin chromophore, with amino acid complexation appearing not to inhibit this decay channel. The strong propensity for electron detachment is attributed to excited-state proton transfer within FMN, with proton transfer from a ribose alcohol to the phosphate preceding electron detachment.


Assuntos
Prótons , Triptofano , Triptofano/química , Mononucleotídeo de Flavina/química , Ácido Glutâmico , Ânions
4.
Phys Chem Chem Phys ; 25(35): 23626-23636, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37649445

RESUMO

Fluorescent labelling of macromolecular samples, including using the green fluorescent protein (GFP), has revolutionised the field of bioimaging. The ongoing development of fluorescent proteins require a detailed understanding of the photophysics of the biochromophore, and how chemical derivatisation influences the excited state dynamics. Here, we investigate the photophysical properties associated with the S1 state of three alkylated derivatives of the chromophore in GFP, in the gas phase using time-resolved photoelectron imaging, and in water using femtosecond fluorescence upconversion. The gas-phase lifetimes (1.6-10 ps), which are associated with the intrinsic (environment independent) dynamics, are substantially longer than the lifetimes in water (0.06-3 ps), attributed to stabilisation of both twisted intermediate structures and conical intersection seams in the condensed phase. In the gas phase, alkylation on the 3 and 5 positions of the phenyl ring slows the dynamics due to inertial effects, while a 'pre-twist' of the methine bridge through alkylation on the 2 and 6 positions significantly shortens the excited state lifetimes. Formation of a minor, long-lived (≫ 40 ps) excited state population in the gas phase is attributed to intersystem crossing to a triplet state, accessed because of a T1/S1 degeneracy in the so-called P-trap potential energy minimum associated with torsion of the single-bond in the bridging unit connecting to the phenoxide ring. A small amount of intersystem crossing is supported through TD-DFT molecular dynamics trajectories and MS-CASPT2 calculations. No such intersystem crossing occurs in water at T = 300 K or in ethanol at T ≈ 77 K, due to a significantly altered potential energy surface and P-trap geometry.


Assuntos
Corantes , Etanol , Proteínas de Fluorescência Verde , Fluorescência , Teoria da Densidade Funcional
5.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37347125

RESUMO

Polycyclic aromatic hydrocarbons have widely been conjectured to be ubiquitous in space, as supported by the recent discovery of two isomers of cyanonaphthalene, indene, and 2-cyanoindene in the Taurus molecular cloud-1 using radioastronomy. Here, the photoionization dynamics of 1-cyanonaphthalene (1-CNN) are investigated using synchrotron radiation over the hν = 9.0-19.5 eV range, revealing that prompt autoionization from the plasmon resonance dominates the photophysics for hν = 11.5-16.0 eV. Minimal photo-induced dissociation, whether originating from an excited state impulsive bond rupture or through internal conversion followed by a statistical bond cleavage process, occurs over the microsecond timescale (as limited by the experimental setup). The direct photoionization cross section and photoelectron angular distributions are simulated using an ezDyson model combining Dyson orbitals with Coulomb wave photoejection. When considering these data in conjunction with recent radiative cooling measurements on 1-CNN+, which showed that cations formed with up to 5 eV of internal energy efficiently stabilize through recurrent fluorescence, we conclude that the organic backbone of 1-CNN is resilient to photodestruction by VUV and soft XUV radiation. These dynamics may prove to be a common feature for the survival of small polycyclic aromatic hydrocarbons in space, provided that the cations have a suitable electronic structure to support recurrent fluorescence.


Assuntos
Temperatura Baixa , Hidrocarbonetos Policíclicos Aromáticos , Fluorescência , Isomerismo , Transição de Fase
6.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557928

RESUMO

Octyl methoxycinnamate (OMC) is a common UVA and UVB filter molecule that is widely used in commercial sunscreens. Here, we used gas-phase laser photodissociation spectroscopy to characterise the intrinsic photostability and photodegradation products of OMC by studying the system in its protonated form, i.e., [OMC·H]+. The major photofragments observed were m/z 179, 161, and 133, corresponding to fragmentation on either side of the ether oxygen of the ester group (m/z 179 and 161) or the C-C bond adjacent to the ester carbonyl group. Additional measurements were obtained using higher-energy collisional dissociation mass spectrometry (HCD-MS) to identify fragments that resulted from the breakdown of the vibrationally hot electronic ground state. We found that the m/z 179 and 161 ions were the main fragments produced by this route. Notably, the m/z 133 ion was not observed through HCD-MS, revealing that this product ion is only produced through a photochemical route. Our results demonstrate that UV photoexcitation of OMC is able to access a dissociative excited-state surface that uniquely leads to the rupture of the C-C bond adjacent to the key ester carbonyl group.


Assuntos
Cinamatos , Protetores Solares , Espectrofotometria , Protetores Solares/química , Cinamatos/química , Espectrometria de Massas , Ésteres , Lasers , Raios Ultravioleta
7.
Phys Chem Chem Phys ; 24(45): 27836-27846, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354978

RESUMO

The photostability of synthetic (unnatural) nucleobases is important in establishing the integrity of new genetic alphabets, and critical for developing healthy semisynthetic organisms. Here, we report the first study to explore the photostability and electronic decay pathways of the synthetic nucleobase, Z (6-amino-5-nitro-2(1H)-pyridone), combining UV laser photodissociation and collisional dissociation measurements to characterise the decay pathways across the region from 3.1-4.9 eV. Photoexcitation across this region produced the m/z 138 ion as the dominant photofragment, mirroring the dominant fragment produced upon higher-energy collisional excitation. Analysis of the ion-yield production curve profile for the m/z 138 ion indicates that it is produced following ultrafast excited state decay with boil off of the OH functional group of Z from the hot electronic ground state. Electronic structure calculations provide physical insight into why this is the dominant fragmentation pathway, since a node in the electron density along the C-OH bond is found for all tautomers of Z. While the dominant decay pathway for Z is consistent with ultrafast excited state decay, we also identify several minor dissociative photochemistry decay pathways, associated with intrinsic photoinstability. The results presented here can be used to guide the development of more photostable synthetic nucleobases.


Assuntos
Compostos Heterocíclicos , Fotoquímica , Lasers , Eletrônica , Espectrometria de Massas
8.
J Phys Chem A ; 126(45): 8508-8518, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36326200

RESUMO

The effective fragment potential (EFP) approach is a sophisticated hybrid approach that allows the inclusion of solvation effects when describing properties and reactivity in the condensed phase, without using empirical parameters. This work examines the performance of the EFP method when describing microsolvation in electronically excited states of neutrals and anions. The examples selected include both localized valence states, as well as diffuse nonvalence states, which represent greater challenges to conventional electronic structure methods. The equation-of-motion coupled cluster with singles and doubles (EOM-XX-CCSD) methodology has been used to provide the quantum chemical description of both the full microsolvated clusters, and the chromophoric moiety in mixed quantum/EFP calculations. We find that, when averaging over multiple configurations of microsolvated clusters, the differences between QM/EFP and full quantum results are minimal, although individual configurations often have larger errors. As expected, diffuse states have somewhat larger errors, although not significantly so. The close proximity of states leading to mixing can make QM/EFP less accurate because a change of ordering of states can occur. Other properties, such as photoelectron images and lifetimes of metastable states, are very well described for the monohydrated clusters investigated.

9.
J Phys Chem Lett ; 13(44): 10245-10252, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301005

RESUMO

The positions and widths of the optically allowed electronic states of the tetracene radical anion located above the detachment threshold energy (i.e anion resonances) are mapped out using total photodetachment yield spectroscopy of cryogenically cooled ions. The presence of these states is detected via the sharp increase in the photodetachment yield compared to that of the monotonic nonresonant direct photodetachment background. The resolution of the resulting spectrum is limited by the ∼5 cm-1 line width of the tunable laser and thus provides a stringent benchmark for computations of the energies and autodetachment lifetimes of these resonance states. The experimental results are compared to high-level electronic structure computations and line width modeling using the orbital stabilization method. These theoretical results are found to be in near quantitative agreement with the experimental data, highlighting their capability to accurately describe the energies and lifetimes of anion resonances for relatively large molecules.

10.
J Chem Phys ; 157(6): 064302, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35963718

RESUMO

We probe resonances (transient anions) in nitrobenzene with the focus on the electron emission from these. Experimentally, we populate resonances in two ways: either by the impact of free electrons on the neutral molecule or by the photoexcitation of the bound molecular anion. These two excitation means lead to transient anions in different initial geometries. In both cases, the anions decay by electron emission and we record the electron spectra. Several types of emission are recognized, differing by the way in which the resulting molecule is vibrationally excited. In the excitation of specific vibrational modes, distinctly different modes are visible in electron collision and photodetachment experiments. The unspecific vibrational excitation, which leads to the emission of thermal electrons following the internal vibrational redistribution, shows similar features in both experiments. A model for the thermal emission based on a detailed balance principle agrees with the experimental findings very well. Finally, a similar behavior in the two experiments is also observed for a third type of electron emission, the vibrational autodetachment, which yields electrons with constant final energies over a broad range of excitation energies. The entrance channels for the vibrational autodetachment are examined in detail, and they point to a new mechanism involving a reverse valence to non-valence internal conversion.

11.
Phys Chem Chem Phys ; 24(28): 17068-17076, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35791920

RESUMO

While common molecular anions show a strong propensity to undergo electron detachment upon UV excitation, this process often occurs in competition with molecular ion dissociation. The factors that affect the balance between these two major possible decay pathways have not been well understood to date. Laser photodissociation spectroscopy of the deprotonated forms of the UV filter molecules, Homosalate (HS) and Octyl Salicylate (OS), i.e. [HS - H]- and [OS - H]-, was used to acquire gas-phase UV absorption spectra for [HS - H]- and [OS - H]-via photodepletion from 3.0-5.8 eV. No photofragmentation (i.e. dissociation of the ionic molecular framework) was observed for either [HS - H]- and [OS - H]- following photoexcitation, revealing that electron loss entirely dominates the electronic decay pathways for these systems. High-level quantum chemical calculations were used to map out the excited states associated with [HS - H]- and [OS - H]-, revealing that the minimum-energy crossing points (MECPs) between the S1 and S0 states are located in elevated regions of the potential energy surface, making internal conversion unlikely. These results are consistent with our experimental observation that electron detachment out-competes hot ground state molecular fragmentation. More generally, our results reveal that the competition between molecular dissociation and electron detachment following anion photoexcitation can be determined by the magnitude of the energy gap between the excitation energy and the MECPs, rather than being a simple function of whether the excitation energy lies above the anion's vertical detachment energy.


Assuntos
Elétrons , Salicilatos , Ânions/química , Íons/química
12.
Acc Chem Res ; 55(9): 1205-1213, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172580

RESUMO

Chemistry can be described as the movement of nuclei within molecules and the concomitant instantaneous change in electronic structure. This idea underpins the central chemical concepts of potential energy surfaces and reaction coordinates. To experimentally capture such chemical change therefore requires methods that can probe both the nuclear and electronic structure simultaneously and on the time scale of atomic motion. In this Account, we show how time-resolved photoelectron imaging can do exactly this and how it can be used to build a detailed and intuitive understanding of the electronic structure and excited-state dynamics of chromophores. The chromophore of the photoactive yellow protein (PYP) is used as a case study. This chromophore contains a para-substituted phenolate anion, where the substituent, R, can be viewed as an acrolein derivative. It is shown that the measured photoelectron angular distribution can be directly related to the electronic structure of the para-substituted phenolate anion. By incrementally considering differing R groups, it is also shown that these photoelectron angular distributions are exquisitely sensitive to the conformational flexibility of R and that when R contains a π-system the excited states of the chromophore can be viewed as a linear combination of the π* molecular orbitals on the phenolate (πPh*) and the R substituent (πR*). Such Hückel treatment shows that the S1 state of the PYP chromophore has predominantly πR* character and that it is essentially the same as the chromophore of the green fluorescent protein (GFP). The S1 excited-state dynamics of the PYP chromophore probed by time-resolved photoelectron imaging clearly reveals both structural (nuclear) dynamics through the energy spectrum and electronic dynamics through the photoelectron angular distributions. Both motions can be accurately assigned using quantum chemical calculations, and these are consistent with the intuitive Hückel treatment presented. The photoactive protein chromophores considered here are examples of where a chemists' intuitive Hückel view for ground-state chemistry appears to be transferable to the prediction of photochemical excited-state reactivity. While elegant and insightful, such models have limitations, including nonadiabatic dynamics, which is present in a related PYP chromophore, where a fraction of the S1 state population forms a nonvalence (dipole-bound) state of the anion.


Assuntos
Proteínas de Bactérias , Ânions/química , Proteínas de Bactérias/química , Proteínas de Fluorescência Verde/química , Conformação Molecular
13.
Phys Chem Chem Phys ; 24(3): 1305-1309, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34984423

RESUMO

Photoactive proteins typically rely on structural changes in a small chromophore to initiate a biological response. While these changes often involve isomerization as the "primary step", preceding this is an ultrafast relaxation of the molecular framework caused by the sudden change in electronic structure upon photoexcitation. Here, we capture this motion for an isolated model chromophore of the photoactive yellow protein using time-resolved photoelectron imaging. It occurs in <150 fs and is apparent from a spectral shift of ∼70 meV and a change in photoelectron anisotropy. Electronic structure calculations enable the quantitative assignment of the geometric and electronic structure changes to a planar intermediate from which the primary step can then proceed.


Assuntos
Proteínas de Bactérias/química , Compostos Cromogênicos/química , Ácidos Cumáricos/química , Fotorreceptores Microbianos/química , Compostos Cromogênicos/efeitos da radiação , Ácidos Cumáricos/efeitos da radiação , Isomerismo , Luz , Processos Fotoquímicos/efeitos da radiação
14.
J Phys Chem Lett ; 12(49): 11811-11816, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34870432

RESUMO

Internal conversion between valence-localized and dipole-bound states is thought to be a ubiquitous process in polar molecular anions, yet there is limited direct evidence. Here, photodetachment action spectroscopy and time-resolved photoelectron imaging with a heteropolycyclic aromatic hydrocarbon (hetero-PAH) anion, deprotonated 1-pyrenol, is used to demonstrate a subpicosecond (τ1 = 160 ± 20 fs) valence to dipole-bound state internal conversion following excitation of the origin transition of the first valence-localized excited state. The internal conversion dynamics are evident in the photoelectron spectra and in the photoelectron angular distributions (ß2 values) as the electronic character of the excited state population changes from valence to nonvalence. The dipole-bound state subsequently decays through mode-specific vibrational autodetachment with a lifetime τ2 = 11 ± 2 ps. These internal conversion and autodetachment dynamics are likely common in molecular anions but difficult to fingerprint due to the transient existence of the dipole-bound state. Potential implications of the present excited state dynamics for interstellar hetero-PAH anion formation are discussed.

15.
J Phys Chem A ; 125(32): 6995-7003, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34347484

RESUMO

Electron attachment to DNA by low energy electrons can lead to DNA damage, so a fundamental understanding of how electrons interact with the components of nucleic acids in solution is an open challenge. In solution, low energy electrons can generate presolvated electrons, epre-, which are efficiently scavanged by pyrimidine nucleobases to form transient negative ions, able to relax to either stable valence bound anions or undergo dissociative electron detachment or transfer to other parts of DNA/RNA leading to strand breakages. In order to understand the initial electron attachment dynamics, this paper presents a joint molecular dynamics and high-level electronic structure study into the behavior of the electronic states of the solvated uracil anion. Both the valence π* and nonvalence epre- states of the solvated uracil system are studied, and the effect of the solvent environment and the geometric structure of the uracil core are uncoupled to gain insight into the physical origin of the stabilization of the solvated uracil anion. Solvent reorganization is found to play a dominant role followed by relaxation of the uracil core.

16.
J Phys Chem A ; 125(22): 4888-4895, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34042462

RESUMO

A study investigating the effect of the basis set, orbital choice, and geometry on the modeling of photoelectron angular distributions (PADs) of molecular anions is presented. Experimental and modeled PADs for a number of molecular anions, including both closed- and open-shell systems, are considered. Guidelines are suggested for chemists who wish to design calculations to capture the correct chemical physics of the anisotropy of photodetachment, while balancing the computational cost associated with larger molecular anions.

17.
Phys Chem Chem Phys ; 23(10): 5817-5823, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33686387

RESUMO

Astrochemical modelling has proposed that 10% or more of interstellar carbon could be tied up as polycyclic aromatic hydrocarbon (PAH) molecules. Developing reliable models of the interstellar carbon lifecycle requires calibration data obtained through laboratory studies on relevant chemical and physical processes, including on the photo-induced and electron-induced dynamics of potential interstellar PAHs. Here, the excited state dynamics of the S1(ππ*) state of 2-naphthoxide are investigated using frequency-, angle-, and time-resolved photoelectron imaging. Frequency-resolved photoelectron spectra taken over the S1(ππ*) band reveal low electron kinetic energy structure consistent with an indirect, vibrational mode-specific electron detachment mechanism. Time-resolved photoelectron imaging using a pump photon energy tuned to the 0-0 transition of the S1(ππ*) band (hν = 2.70 eV) and a non-resonant probe photon provides the excited state autodetachment lifetime at τ = 130 ± 10 fs. There is no evidence for internal conversion to the ground electronic state or a dipole-bound state. These results imply that 2-naphthoxide has no resilience to photodestruction through the absorption of visible radiation resonant with the S1(ππ*) band, and that electron capture by the S1(ππ*) state, which is formally a shape resonance, is not a doorway state to a stable interstellar anion.

18.
J Phys Chem A ; 124(44): 9237-9243, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33103905

RESUMO

In this work we present an ab initio investigation into the effect of monohydration on the interaction of uracil with low energy electrons. Electron attachment and photodetachment experimental studies have previously shown dramatic changes in uracil upon solvation with even a single water molecule, due to an inversion of the character of the ground state of the anion. Here we explore the interplay between the nonvalence and valence states of the uracil anion, as a function of geometry and site of solvation. Our model provides unambiguous interpretation of previous photoelectron studies, reproducing the binding energies and photoelectron images for bare uracil and a single isomer of the U•(H2O)1 cluster. The results of this study provide insight into how electrons may attach to hydrated nucleobases. These results lay the foundations for further investigations into the effect of microhydration on the electronic structure and electron capture dynamics of nucleobases.

19.
J Phys Chem Lett ; 11(15): 6456-6462, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32687376

RESUMO

The methyl-2,2-dicyanoacetate anion is synthesized in an electrospray ionization source through a gas-phase reaction involving tetracyanoethylene and methanol. Photoelectron imaging is used to determine the isomeric form of the product. The photoelectron spectra and angular distributions are consistent with only a single isomer. Additionally, mode-specific vibrational autodetachment is observed. This can be correlated with the emission from a photoexcited dipole-bound state by considering the IR spectrum of the neutral molecule, adding further confirmation of the isomeric form and providing a binding energy of the dipole-bound state. Our experiments show how conventional photoelectron imaging can be used to determine detailed information about gas-phase reaction products.

20.
Phys Chem Chem Phys ; 22(28): 15919-15925, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32647849

RESUMO

Despite a long tradition of descriptions of borazine as an 'inorganic benzene', this molecule is a non-aromatic species according to the magnetic (ring-current) criterion. Borazine, borazocine, and the larger neutral (BN)nH2n azabora-annulene heterocycles in planar conformations, although π-isoelectronic with [2n]annulenes, support only localized induced currents in perpendicular magnetic fields. The π-current maps of these systems comprise superpositions of separate 'lone-pair' circulations on all nitrogen centres. For the systems with n > 4, planarity must be enforced by a constraint. Qualitative orbital analysis based on the ipsocentric approach to calculation of induced current density suggests that global induced currents could be produced through strategic changes to the π electron count. In ab initio calculations, azabora-annulenes with rings of size [8]- and larger were indeed found to support global diatropic ring currents in both anionic and cationic forms with (4N + 2) π electron counts. The planar conformation of the charged ring typically occupies a stationary point of higher order on the potential energy surface, rather than a minimum. However, the borazocine dianion, [B4N4H8]2-, occupies a planar minimum, supports a diatropic ring current of strength comparable to that in benzene, and is predicted to participate in sandwich compounds; it is therefore a good candidate for an aromatised azabora-annulene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...