Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(17): 1548-1561.e10, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37442140

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells that facilitate cancer progression. However, our knowledge of the niches of individual TAM subsets and their development and function remain incomplete. Here, we describe a population of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)-expressing TAMs, which form coordinated multi-cellular "nest" structures that are heterogeneously distributed proximal to vasculature in tumors of a spontaneous murine model of breast cancer. We demonstrate that LYVE-1+ TAMs develop in response to IL-6, which induces their expression of the immune-suppressive enzyme heme oxygenase-1 and promotes a CCR5-dependent signaling axis, which guides their nest formation. Blocking the development of LYVE-1+ TAMs or their nest structures, using gene-targeted mice, results in an increase in CD8+ T cell recruitment to the tumor and enhanced response to chemotherapy. This study highlights an unappreciated collaboration of a TAM subset to form a coordinated niche linked to immune exclusion and resistance to anti-cancer therapy.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/patologia , Macrófagos/metabolismo
2.
Essays Biochem ; 67(6): 919-928, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37199172

RESUMO

Perivascular (Pv) tumor-associated macrophages (TAMs) are a highly specialized stromal subset within the tumor microenvironment (TME) that are defined by their spatial proximity, within one cell thickness, to blood vasculature. PvTAMs have been demonstrated to support a variety of pro-tumoral functions including angiogenesis, metastasis, and modulating the immune and stromal landscape. Furthermore, PvTAMs can also limit the response of anti-cancer and anti-angiogenic therapies and support tumor recurrence post-treatment. However, their role may not exclusively be pro-tumoral as PvTAMs can also have immune-stimulatory capabilities. PvTAMs are derived from a monocyte progenitor that develop and localize to the Pv niche as part of a multistep process which relies on a series of signals from tumor, endothelial and Pv mesenchymal cell populations. These cellular communications and signals create a highly specialized TAM subset that can also form CCR5-dependent multicellular 'nest' structures in the Pv niche. This review considers our current understanding of the role of PvTAMs, their markers for identification, development, and function in cancer. The role of PvTAMs in supporting disease progression and modulating the outcome from anti-cancer therapies highlight these cells as a therapeutic target. However, their resistance to pan-TAM targeting therapies, such as those targeting the colony stimulating factor-1 (CSF1)-CSF1 receptor axis, prompts the need for more targeted therapeutic approaches to be considered for this subset. This review highlights potential therapeutic strategies to target and modulate PvTAM development and function in the TME.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/patologia , Macrófagos/patologia , Neoplasias/patologia , Progressão da Doença , Microambiente Tumoral
3.
Sci Adv ; 7(45): eabg9518, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34730997

RESUMO

Tumor-associated macrophages (TAMs) are a highly plastic stromal cell type that support cancer progression. Using single-cell RNA sequencing of TAMs from a spontaneous murine model of mammary adenocarcinoma (MMTV-PyMT), we characterize a subset of these cells expressing lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve-1) that spatially reside proximal to blood vasculature. We demonstrate that Lyve-1+ TAMs support tumor growth and identify a pivotal role for these cells in maintaining a population of perivascular mesenchymal cells that express α-smooth muscle actin and phenotypically resemble pericytes. Using photolabeling techniques, we show that mesenchymal cells maintain their prevalence in the growing tumor through proliferation and uncover a role for Lyve-1+ TAMs in orchestrating a selective platelet-derived growth factor­CC­dependent expansion of the perivascular mesenchymal population, creating a proangiogenic niche. This study highlights the inter-reliance of the immune and nonimmune stromal network that supports cancer progression and provides therapeutic opportunities for tackling the disease.

4.
Front Immunol ; 12: 658315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868304

RESUMO

Heme oxygenase-1 (HO-1) is an inducible intracellular enzyme that is expressed in response to a variety of stimuli to degrade heme, which generates the biologically active catabolites carbon monoxide (CO), biliverdin and ferrous iron (Fe2+). HO-1 is expressed across a range of cancers and has been demonstrated to promote tumor progression through a variety of mechanisms. HO-1 can be expressed in a variety of cells within the tumor microenvironment (TME), including both the malignant tumor cells as well as stromal cell populations such as macrophages, dendritic cells and regulatory T-cells. Intrinsically to the cell, HO-1 activity provides antioxidant, anti-apoptotic and cytoprotective effects via its catabolites as well as clearing toxic intracellular heme. However, the catabolites of heme degradation can also diffuse outside of the cell to extrinsically modulate the wider TME, influencing cellular functionality and biological processes which promote tumor progression, such as facilitating angiogenesis and metastasis, as well as promoting anti-inflammation and immune suppression. Pharmacological inhibition of HO-1 has been demonstrated to be a promising therapeutic approach to promote anti-tumor immune responses and inhibit metastasis. However, these biological functions might be context, TME and cell type-dependent as there is also conflicting reports for HO-1 activity facilitating anti-tumoral processes. This review will consider our current understanding of the role of HO-1 in cancer progression and as a therapeutic target in cancer.


Assuntos
Heme Oxigenase-1/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/genética , Humanos , Imunomodulação , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Metástase Neoplásica , Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Oxirredução , Transdução de Sinais , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
5.
Front Immunol ; 10: 1654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379850

RESUMO

Cytotoxic chemotherapeutics (CCTs) are widely used in the treatment of cancer. Although their mechanisms of action have been best understood in terms of targeting the apparatus of mitosis, an ability to stimulate anti-tumor immune responses is increasing the recognition of these agents as immunotherapies. Immune checkpoint blockade antibodies neutralize important, but specific, immune-regulatory interactions such as PD-1/PD-L1 and CTLA-4 to improve the anti-tumor immune response. However, CCTs can provide a broad-acting immune-stimulus against cancer, promoting both T-cell priming and recruitment to the tumor, which compliments the effects of immune checkpoint blockade. A key pathway in this process is "immunogenic cell death" (ICD) which occurs as a result of tumor cell endoplasmic reticulum stress and apoptosis elicited by CCTs. ICD involves a series of non-redundant signaling events which break tolerance and license anti-tumor antigen-specific T-cells, allowing CCTs to act as "in situ" tumor vaccination tools. Not all responses are tumor cell-intrinsic, as CCTs can also modulate the broader tumor microenvironment. This modulation occurs through preferential depletion of stromal cells which suppress and neutralize robust anti-tumor immune responses, such as myeloid cell populations and Tregs, while effector CD8+ and CD4+ T-cells and NK cells are relatively spared. The immune-stimulating effects of CCTs are dependent on chemotherapy class, dose and tumor cell sensitivity to the agent, highlighting the need to understand the underlying biology of these responses. This mini review considers the immune-stimulating effects of CCTs from a molecular perspective, specifically highlighting considerations for their utilization in the context of combinations with immunotherapy.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Animais , Temperatura Alta , Humanos , Imunoterapia/métodos , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
6.
Sci Rep ; 9(1): 10244, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308404

RESUMO

The enzyme succinate dehydrogenase (SDH) functions in the citric acid cycle and loss of function predisposes to the development of phaeochromocytoma/paraganglioma (PPGL), wild type gastrointestinal stromal tumour (wtGIST) and renal cell carcinoma. SDH-deficient tumours are most commonly associated with a germline SDH subunit gene (SDHA/B/C/D) mutation but can also be associated with epigenetic silencing of the SDHC gene. However, clinical diagnostic testing for an SDHC epimutation is not widely available. The objective of this study was to investigate the indications for and the optimum diagnostic pathways for the detection of SDHC epimutations in clinical practice. SDHC promoter methylation analysis of 32 paraffin embedded tumours (including 15 GIST and 17 PPGL) was performed using a pyrosequencing technique and correlated with SDHC gene expression. SDHC promoter methylation was identified in 6 (18.7%) tumours. All 6 SDHC epimutation cases presented with SDH deficient wtGIST and 3/6 cases had multiple primary tumours. No case of constitutional SDHC promoter hypermethylation was detected. Whole genome sequencing of germline DNA from three wtGIST cases with an SDHC epimutation, did not reveal any causative sequence anomalies. Herein, we recommend a diagnostic workflow for the detection of an SDHC epimutation in a service setting.


Assuntos
Epigênese Genética/genética , Tumores do Estroma Gastrointestinal/genética , Succinato Desidrogenase/genética , Adolescente , Neoplasias das Glândulas Suprarrenais/genética , Adulto , Idoso , Metilação de DNA/genética , Epigenômica/métodos , Feminino , Tumores do Estroma Gastrointestinal/metabolismo , Genes Reguladores/genética , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutação , Paraganglioma/genética , Feocromocitoma/genética , Regiões Promotoras Genéticas/genética , Succinato Desidrogenase/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...