Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672507

RESUMO

Epithelial-mesenchymal transition (EMT) fosters cancer cell invasion and metastasis, the main cause of cancer-related mortality. Growing evidence that SNAIL and ZEB transcription factors, typically portrayed as master regulators of EMT, may be dispensable for this process, led us to re-investigate its mechanistic underpinnings. For this, we used an unbiased computational approach that integrated time-resolved analyses of chromatin structure and differential gene expression, to predict transcriptional regulators of TGFß1-inducible EMT in the MCF10A mammary epithelial cell line model. Bioinformatic analyses indicated comparatively minor contributions of SNAIL proteins and ZEB1 to TGFß1-induced EMT, whereas the AP-1 subunit JUNB was anticipated to have a much larger impact. CRISPR/Cas9-mediated loss-of-function studies confirmed that TGFß1-induced EMT proceeded independently of SNAIL proteins and ZEB1. In contrast, JUNB was necessary and sufficient for EMT in MCF10A cells, but not in A549 lung cancer cells, indicating cell-type-specificity of JUNB EMT-regulatory capacity. Nonetheless, the JUNB-dependence of EMT-associated transcriptional reprogramming in MCF10A cells allowed to define a gene expression signature which was regulated by TGFß1 in diverse cellular backgrounds, showed positively correlated expression with TGFß signaling in multiple cancer transcriptomes, and was predictive of patient survival in several cancer types. Altogether, our findings provide novel mechanistic insights into the context-dependent control of TGFß1-driven EMT and thereby may lead to improved diagnostic and therapeutic options.

3.
Oncogene ; 38(40): 6647-6661, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31391555

RESUMO

At the molecular level, epithelial-to-mesenchymal transition (EMT) necessitates extensive transcriptional reprogramming which is orchestrated by a small group of gene-regulatory factors that include the zinc-finger DNA-binding protein SNAIL1. Although SNAIL1 is a well-known master regulator of EMT, knowledge of its immediate target genes is incomplete. Here, we used ChIP-seq to identify genes directly regulated by SNAIL1 in colorectal adenocarcinoma cells. When comparing the genomic distribution of SNAIL1 to that of the intestinal stem cell (ISC) transcription factors ASCL2 and TCF7L2, we observed a significant overlap. Furthermore, SNAIL1 ChIP-seq peaks are associated with a substantial fraction of ISC signature genes. In two colorectal cancer cell lines, we verified that SNAIL1 decreases ISC marker expression. Likewise, SNAIL1 directly represses the proto-oncogene MYB, and the long noncoding RNA (lncRNA) WiNTRLINC1, a recently described regulator of ASCL2. SNAIL1 targets multiple regulatory elements at the MYB and WiNTRLINC1 loci, and displaces ASCL2 and TCF7L2 from their binding regions at a MYB downstream regulatory element. Correlation analyses and expression profiling showed antiparallel expression of SNAIL1 and MYB in colorectal and breast cancer cell lines and tumor transcriptomes, suggesting that SNAIL1 controls MYB expression in different tissues. MYB loss-of-function attenuated proliferation and impaired clonogenicity in two- and three-dimensional cell cultures. Therefore, SNAIL1-mediated downregulation of MYB and ISC markers like WiNTRLINC1 likely contributes to the decrease in proliferation known to be associated with EMT, while simultaneously abrogating stemness features of colorectal cancer cells. Apparently, the relationship between EMT and stemness varies in different tumor entities.


Assuntos
Adenocarcinoma/metabolismo , Mapeamento Cromossômico , Neoplasias Colorretais/metabolismo , DNA de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Neoplasias/metabolismo , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...