Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e12524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036119

RESUMO

BACKGROUND: The presence of Escherichia coli O157:H7 (E. coli O157:H7) super-shedding cattle in feedlots has the potential to increase the overall number (bio-burden) of E. coli O157:H7 in the environment. It is important to identify factors to reduce the bio-burden of E. coli O157 in feedlots by clarifying practices associated with the occurrence of super-shedders in feedlot cattle. METHODS: The objective of this study is to (1) identify host, pathogen, and management risk factors associated with naturally infected feedlot cattle excreting high concentrations of E. coli O157:H7 in their feces and (2) to determine whether the ingested dose or the specific strain of E. coli O157:H7 influences a super-shedder infection within experimentally inoculated feedlot cattle. To address this, (1) pen floor fecal samples and herd parameters were collected from four feedlots over a 9-month period, then (2) 6 strains of E. coli O157:H7, 3 strains isolated from normal shedder steers and 3 strains isolated from super-shedder steers, were inoculated into 30 one-year-old feedlot steers. Five steers were assigned to each E. coli O157:H7 strain group and inoculated with targeted numbers of 102, 104, 106, 108, and 1010 CFU of bacteria respectively. RESULTS: In the feedlots, prevalence of infection with E. coli O157:H7 for the 890 fecal samples collected was 22.4%, with individual pen prevalence ranging from 0% to 90% and individual feedlot prevalence ranging from 8.4% to 30.2%. Three samples had E. coli O157:H7 levels greater than 104 MPN/g feces, thereby meeting the definition of super-shedder. Lower body weight at entry to the feedlot and higher daily maximum ambient temperature were associated with increased odds of a sample testing positive for E. coli O157:H7. In the experimental inoculation trial, the duration and total environmental shedding load of E. coli O157:H7 suggests that the time post-inoculation and the dose of inoculated E. coli O157:H7 are important while the E. coli O157:H7 strain and shedding characteristic (normal or super-shedder) are not. DISCUSSION: Under the conditions of this experiment, super-shedding appears to be the result of cattle ingesting a high dose of any strain of E. coli O157:H7. Therefore strategies that minimize exposure to large numbers of E. coli O157:H7 should be beneficial against the super-shedding of E. coli O157:H7 in feedlots.

2.
Vet Sci ; 5(4)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326606

RESUMO

Shiga toxin-producing Escherichia coli, like E. coli O157:H7, are important human and animal pathogens. Naturally-acquired E. coli O157:H7 infections occur in numerous species but, particularly, cattle have been identified as a significant reservoir for human cases. E. coli O157:H7 are isolated from a number of domestic and wild animals, including rodents that share a living space with cattle. These Shiga toxin-producing E. coli O157:H7 strains can be highly virulent in humans, but little is known about the sequelae of interspecies transfer. In a group of neonatal calves, we determined the differences in colonization patterns and lesions associated with infection using either a wildlife or bovine E. coli O157:H7 strain. In calves challenged with the wildlife E. coli O157:H7 strain, the large (descending) colon was solely colonized, which differed substantially from the calves inoculated with the bovine E. coli O157:H7 strain, where the spiral colon was the principal target of infection. This study also demonstrated that while both interspecies- and intraspecies-derived E. coli O157:H7 can infect young calves, the distribution and severity differs.

3.
Zoonoses Public Health ; 65(7): 887-896, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29998551

RESUMO

Mixed crop-livestock farms (MCLF) integrate livestock and crops using their animals to graze crop residues and/or cover crops. MCLF are considered sustainable because grazing and the manure deposited by livestock enhance soil fertility and recycles farm nutrients. However, livestock manure may introduce enteric foodborne pathogens to the soil, which could contaminate fresh produce. Organic farmers in the United States follow the USDA National Organic Program (NOP) standards, which require 90 or 120 days between incorporating raw manure into the soil and harvest. Although not specifically addressed in NOP, organic farmers using grazing within production fields may also use this standard. The objectives of this study were to generate preharvest data to assess the die-off of generic Escherichia coli (E. coli) in the soil, after cover crops were grazed by sheep; and assess the genetic relatedness of generic E. coli isolates between soil and sheep faecal samples. We conducted a repeated observational study to evaluate the persistence of generic E. coli, as an indicator of faecal contamination and surrogate for STEC, in the soil of two fields (A and B) on an organic MCLF. Results showed a 3.70 log10 reduction in mean generic E. coli concentration MPN in the soil of field A from the highest of 3.70 log10 MPN/g on 48 day postsheep grazing (DPS) to -0.70 log10 MPN/g on 139 DPS. Field B showed a 3.51 log10 reduction in mean generic E. coli concentration in the soil from the highest mean of 3.51 log10 MPN/g on 14 DPS to the lowest mean -0.35 log10 MPN/g on 112 DPS. STEC prevalence in the sheep flock was 4.17% (1/24). Closely related generic E. coli strains were found between soil and faecal samples. Developing research-based waiting periods between grazing and harvest is important to inform best practices for farmers and food safety regulators.


Assuntos
Criação de Animais Domésticos/métodos , Escherichia coli/isolamento & purificação , Ovinos , Microbiologia do Solo , Verduras , Animais , Fazendas , Fezes/microbiologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...