Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 65(3): 294-305, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28876471

RESUMO

CYP725A4 is a P450 enzyme from Taxus cuspidata that catalyzes the formation of taxadiene-5α-ol (T5α-ol) from taxadiene in paclitaxel biosynthesis. Past attempts expressing CYP725A4 in heterologous hosts reported the formation of 5(12)-oxa-3(11)-cyclotaxane (OCT) and/or 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) instead of, or in addition to, T5α-ol. Here, we report that T5α-ol is produced as a minor product by Escherichia coli expressing both taxadiene synthase and CYP725A4. The major products were OCT and iso-OCT, while trace amounts of unidentified monooxygenated taxanes were also detected by gas chromatography-mass spectrometry. Since OCT and iso-OCT had not been found in nature, we tested the hypothesis that protein-protein interaction of CYP725A4 with redox partners, such as cytochrome P450 reductase (CPR) and cytochrome b5, may affect the products formed by CYP725A4, possibly favoring the formation of T5α-ol over OCT and iso-OCT. Our results show that coexpression of CYP725A4 with CPR from different organisms did not change the relative ratios of OCT, iso-OCT, and T5α-ol, while cytochrome b5 decreased overall levels of the products formed. Although unsuccessful in finding conditions that promote T5α-ol formation over other products, we used our results to clarify conflicting claims in the literature and discuss other possible approaches to produce paclitaxel via metabolic and enzyme engineering.


Assuntos
Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Escherichia coli/metabolismo , Taxus/enzimologia , Alcenos/química , Sistema Enzimático do Citocromo P-450/genética , Diterpenos/química , Taxus/genética
2.
Transgenic Res ; 18(4): 655-60, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19241134

RESUMO

Taxadiene synthase gene from Taxus brevifolia was constitutively expressed in the moss Physcomitrella patens using a ubiquitin promoter to produce taxa-4(5),11(12)-diene, the precursor of the anticancer drug paclitaxel. In stable moss transformants, taxa-4(5),11(12)-diene was produced up to 0.05% fresh weight of tissue, without significantly affecting the amounts of the endogenous diterpenoids (ent-kaurene and 16-hydroxykaurane). Unlike higher plants that had been genetically modified to produce taxa-4(5),11(12)-diene, transgenic P. patens did not exhibit growth inhibition due to alteration of diterpenoid metabolic pools. Thus we propose that P. patens is a promising alternative host for the biotechnological production of paclitaxel and its precursors.


Assuntos
Alcenos/metabolismo , Biotecnologia/métodos , Bryopsida/metabolismo , Diterpenos/metabolismo , Isomerases/genética , Plantas Geneticamente Modificadas/metabolismo , Taxus/enzimologia , Bryopsida/genética , Plantas Geneticamente Modificadas/genética , Taxus/genética
3.
Phytochemistry ; 70(1): 40-52, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19131081

RESUMO

Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 alpha-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, alpha-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred alpha-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from alpha-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.


Assuntos
Bryopsida/enzimologia , Eicosanoides/metabolismo , Lipoxigenase/metabolismo , Ácidos Esteáricos/metabolismo , Sequência de Aminoácidos , Bryopsida/genética , Eicosanoides/química , Regulação da Expressão Gênica de Plantas/fisiologia , Concentração de Íons de Hidrogênio , Lipoxigenase/genética , Dados de Sequência Molecular , Filogenia , Ácidos Esteáricos/química
4.
FEBS Lett ; 583(2): 475-80, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19121310

RESUMO

Gibberellins are ent-kaurene-derived diterpenoid phytohormones produced by plants, fungi, and bacteria. The distinct gibberellin biosynthetic pathways in plants and fungi are known, but not that in bacteria. Plants typically use two diterpene synthases to form ent-kaurene, while fungi use only a single bifunctional diterpene synthase. We demonstrate here that Bradyrhizobium japonicum encodes separate ent-copalyl diphosphate and ent-kaurene synthases. These are found in an operon whose enzymatic composition indicates that gibberellin biosynthesis in bacteria represents a third independently assembled pathway relative to plants and fungi. Nevertheless, sequence comparisons also suggest potential homology between diterpene synthases from bacteria, plants, and fungi.


Assuntos
Alquil e Aril Transferases/metabolismo , Bradyrhizobium/enzimologia , Giberelinas/biossíntese , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Bradyrhizobium/genética , Clonagem Molecular , Dados de Sequência Molecular , Óperon , Proteínas de Plantas/genética
5.
Planta ; 229(4): 1003-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19112579

RESUMO

Gibberellins are ent-kaurene derived phytohormones that are involved in seed germination, stem elongation, and flower induction in seed plants, as well as in antheridia formation and spore germination in ferns. Although ubiquitous in vascular plants, the occurrence and potential function(s) of gibberellins in bryophytes have not yet been resolved. To determine the potential role of gibberellin and/or gibberellin-like compounds in mosses, the effect of AMO-1618 on spores of Physcomitrella patens (Hedw.) B.S.G. was tested. AMO-1618, which inhibited ent-kaurene and gibberellin biosynthesis in angiosperms, also inhibited the bifunctional copalyl diphosphate synthase (E.C. 5.5.1.13)/ent-kaurene synthase (E.C. 4.2.3.19) of P. patens. AMO-1618 also caused a decrease in spore germination rates of P. patens, and this inhibitory effect was less pronounced in the presence of ent-kaurene. These results suggest that ent-kaurene biosynthesis is required by P. patens spores to germinate, implying the presence of gibberellin-like phytohormones in mosses.


Assuntos
Bryopsida/metabolismo , Diterpenos do Tipo Caurano/biossíntese , Giberelinas/biossíntese , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Bryopsida/citologia , Bryopsida/efeitos dos fármacos , Diterpenos do Tipo Caurano/metabolismo , Diterpenos do Tipo Caurano/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compostos de Amônio Quaternário/farmacologia , Proteínas Recombinantes/metabolismo
6.
Science ; 319(5859): 64-9, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-18079367

RESUMO

We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.


Assuntos
Evolução Biológica , Bryopsida/genética , Genoma de Planta , Adaptação Fisiológica , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Bryopsida/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Biologia Computacional , Reparo do DNA , Desidratação , Duplicação Gênica , Genes de Plantas , Magnoliopsida/genética , Magnoliopsida/fisiologia , Redes e Vias Metabólicas/genética , Família Multigênica , Oryza/genética , Oryza/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Análise de Sequência de DNA , Transdução de Sinais/genética
7.
J Biol Chem ; 282(42): 30827-35, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17726025

RESUMO

There is much uncertainty as to whether plants use arogenate, phenylpyruvate, or both as obligatory intermediates in Phe biosynthesis, an essential dietary amino acid for humans. This is because both prephenate and arogenate have been reported to undergo decarboxylative dehydration in plants via the action of either arogenate (ADT) or prephenate (PDT) dehydratases; however, neither enzyme(s) nor encoding gene(s) have been isolated and/or functionally characterized. An in silico data mining approach was thus undertaken to attempt to identify the dehydratase(s) involved in Phe formation in Arabidopsis, based on sequence similarity of PDT-like and ACT-like domains in bacteria. This data mining approach suggested that there are six PDT-like homologues in Arabidopsis, whose phylogenetic analyses separated them into three distinct subgroups. All six genes were cloned and subsequently established to be expressed in all tissues examined. Each was then expressed as a Nus fusion recombinant protein in Escherichia coli, with their substrate specificities measured in vitro. Three of the resulting recombinant proteins, encoded by ADT1 (At1g11790), ADT2 (At3g07630), and ADT6 (At1g08250), more efficiently utilized arogenate than prephenate, whereas the remaining three, ADT3 (At2g27820), ADT4 (At3g44720), and ADT5 (At5g22630) essentially only employed arogenate. ADT1, ADT2, and ADT6 had k(cat)/Km values of 1050, 7650, and 1560 M(-1) S(-1) for arogenate versus 38, 240, and 16 M(-1) S(-1) for prephenate, respectively. By contrast, the remaining three, ADT3, ADT4, and ADT5, had k(cat)/Km values of 1140, 490, and 620 M(-1) S(-1), with prephenate not serving as a substrate unless excess recombinant protein (>150 microg/assay) was used. All six genes, and their corresponding proteins, are thus provisionally classified as arogenate dehydratases and designated ADT1-ADT6.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hidroliases/metabolismo , Fenilalanina/biossíntese , Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Clonagem Molecular , Ácidos Cicloexanocarboxílicos/química , Ácidos Cicloexanocarboxílicos/metabolismo , Cicloexenos/química , Cicloexenos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Humanos , Hidroliases/química , Hidroliases/genética , Cinética , Fenilalanina/química , Filogenia , Prefenato Desidratase/química , Prefenato Desidratase/genética , Prefenato Desidratase/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/fisiologia , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo
8.
Funct Plant Biol ; 32(4): 335-344, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689135

RESUMO

Antibodies raised against tonoplast intrinsic proteins (TIPs) were used to probe the functional status of the soybean [Glycine max (L.) Merr.] paraveinal mesophyll (PVM) vacuole during changes in nitrogen metabolism within the leaf. Young plants grown under standard conditions had PVM vacuoles characterised by the presence of γ-TIP, which is indicative of a lytic function. When plants were then subjected to shoot tip removal for a period of 15 d, forcing a sink-limited physiological condition, the γ-TIP marker diminished while the δ-TIP marker became present in the PVM vacuole, indicating the conversion of the PVM vacuole to a storage function. When the shoot tips were allowed to regrow, the γ-TIP marker again became dominant demonstrating the reversion of these PVM vacuoles back to a lytic compartment. The changes in TIP markers correlated with the accumulation of vegetative storage proteins and vegetative lipoxygenases, proteins implicated in nitrogen storage and assimilate partitioning. This research suggests that the PVM vacuole is able to undergo dynamic conversion between lytic and storage functions and further implicates this cell layer in assimilate storage and mobilisation in soybeans.

9.
Phytochemistry ; 64(6): 1097-112, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14568076

RESUMO

The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study, an exhaustive analysis of The Institute for Genomic Research (TIGR) and The Arabidopsis Information Resource (TAIR) databases, together with all currently compiled EST sequence data, was carried out in order to determine to what extent the various metabolic networks from phenylalanine ammonia lyase (PAL) to the monolignols were organized and/or could be predicted. In these databases, there are some 65 genes which have been annotated as encoding putative enzymatic steps in monolignol biosynthesis, although many of them have only very low homology to monolignol pathway genes of known function in other plant systems. Our detailed analysis revealed that presently only 13 genes (two PALs, a cinnamate-4-hydroxylase, a p-coumarate-3-hydroxylase, a ferulate-5-hydroxylase, three 4-coumarate-CoA ligases, a cinnamic acid O-methyl transferase, two cinnamoyl-CoA reductases) and two cinnamyl alcohol dehydrogenases can be classified as having a bona fide (definitive) function; the remaining 52 genes currently have undetermined physiological roles. The EST database entries for this particular set of genes also provided little new insight into how the monolignol pathway was organized in the different tissues and organs, this being perhaps a consequence of both limitations in how tissue samples were collected and in the incomplete nature of the EST collections. This analysis thus underscores the fact that even with genomic sequencing, presumed to provide the entire suite of putative genes in the monolignol-forming pathway, a very large effort needs to be conducted to establish actual catalytic roles (including enzyme versatility), as well as the physiological function(s) for each member of the (multi)gene families present and the metabolic networks that are operative. Additionally, one key to identifying physiological functions for many of these (and other) unknown genes, and their corresponding metabolic networks, awaits the development of technologies to comprehensively study molecular processes at the single cell level in particular tissues and organs, in order to establish the actual metabolic context.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilpropionatos/metabolismo , Arabidopsis/enzimologia , Mapeamento Cromossômico , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Lignina/análogos & derivados , Lignina/biossíntese , Lignina/genética , Estruturas Vegetais/genética , Estruturas Vegetais/metabolismo , Homologia de Sequência
10.
Phytochemistry ; 61(3): 221-94, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12359514

RESUMO

A comprehensive assessment of lignin configuration in transgenic and mutant plants is long overdue. This review thus undertook the systematic analysis of trends manifested through genetic and mutational manipulations of the various steps associated with monolignol biosynthesis; this included consideration of the downstream effects on organized lignin assembly in the various cell types, on vascular function/integrity, and on plant growth and development. As previously noted for dirigent protein (homologs), distinct and sophisticated monolignol forming metabolic networks were operative in various cell types, tissues and organs, and form the cell-specific guaiacyl (G) and guaiacyl-syringyl (G-S) enriched lignin biopolymers, respectively. Regardless of cell type undergoing lignification, carbon allocation to the different monolignol pools is apparently determined by a combination of phenylalanine availability and cinnamate-4-hydroxylase/"p-coumarate-3-hydroxylase" (C4H/C3H) activities, as revealed by transcriptional and metabolic profiling. Downregulation of either phenylalanine ammonia lyase or cinnamate-4-hydroxylase thus predictably results in reduced lignin levels and impaired vascular integrity, as well as affecting related (phenylpropanoid-dependent) metabolism. Depletion of C3H activity also results in reduced lignin deposition, albeit with the latter being derived only from hydroxyphenyl (H) units, due to both the guaiacyl (G) and syringyl (S) pathways being blocked. Apparently the cells affected are unable to compensate for reduced G/S levels by increasing the amounts of H-components. The downstream metabolic networks for G-lignin enriched formation in both angiosperms and gymnosperms utilize specific cinnamoyl CoA O-methyltransferase (CCOMT), 4-coumarate:CoA ligase (4CL), cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) isoforms: however, these steps neither affect carbon allocation nor H/G designations, this being determined by C4H/C3H activities. Such enzymes thus fulfill subsidiary processing roles, with all (except CCOMT) apparently being bifunctional for both H and G substrates. Their severe downregulation does, however, predictably result in impaired monolignol biosynthesis, reduced lignin deposition/vascular integrity, (upstream) metabolite build-up and/or shunt pathway metabolism. There was no evidence for an alternative acid/ester O-methyltransferase (AEOMT) being involved in lignin biosynthesis. The G/S lignin pathway networks are operative in specific cell types in angiosperms and employ two additional biosynthetic steps to afford the corresponding S components, i.e. through introduction of an hydroxyl group at C-5 and its subsequent O-methylation. [These enzymes were originally classified as ferulate-5-hydroxylase (F5H) and caffeate O-methyltransferase (COMT), respectively.] As before, neither step has apparently any role in carbon allocation to the pathway; hence their individual downregulation/manipulation, respectively, gives either a G enriched lignin or formation of the well-known S-deficient bm3 "lignin" mutant, with cell walls of impaired vascular integrity. In the latter case, COMT downregulation/mutation apparently results in utilization of the isoelectronic 5-hydroxyconiferyl alcohol species albeit in an unsuccessful attempt to form G-S lignin proper. However, there is apparently no effect on overall G content, thereby indicating that deposition of both G and S moieties in the G/S lignin forming cells are kept spatially, and presumably temporally, fully separate. Downregulation/mutation of further downstream steps in the G/S network [i.e. utilizing 4CL, CCR and CAD isoforms] gives predictable effects in terms of their subsidiary processing roles: while severe downregulation of 4CL gave phenotypes with impaired vascular integrity due to reduced monolignol supply, there was no evidence in support of increased growth and/or enhanced cellulose biosynthesis. CCR and CAD downregulation/mutations also established that a depletion in monolignol supply reduced both lignin contents supply reduced both lignin contents and vascular integrity, with a concomitant shift towards (upstream) metabolite build-up and/or shunting. The extraordinary claims of involvement of surrogate monomers (2-methoxybenzaldehyde, feruloyl tyramine, vanillic acid, etc.) in lignification were fully disproven and put to rest, with the investigators themselves having largely retracted former claims. Furthermore analysis of the well-known bm1 mutation, a presumed CAD disrupted system, apparently revealed that both G and S lignin components were reduced. This seems to imply that there is no monolignol specific dehydrogenase, such as the recently described sinapyl alcohol dehydrogenase (SAD) for sinapyl alcohol formation. Nevertheless, different CAD isoforms of differing homology seem to be operative in different lignifying cell types, thereby giving the G-enriched and G/S-enriched lignin biopolymers, respectively. For the G-lignin forming network, however, the CAD isoform is apparently catalytically less efficient with all three monolignols than that additionally associated with the corresponding G/S lignin forming network(s), which can more efficiently use all three monolignols. However, since CAD does not determine either H, G, or S designation, it again serves in a subsidiary role-albeit using different isoforms for different cell wall developmental and cell wall type responses. The results from this analysis contrasts further with speculations of some early investigators, who had viewed lignin assembly as resulting from non-specific oxidative coupling of monolignols and subsequent random polymerization. At that time, though, the study of the complex biological (biochemical) process of lignin assembly had begun without any of the (bio)chemical tools to either address or answer the questions posed as to how its formation might actually occur. Today, by contrast, there is growing recognition of both sophisticated and differential control of monolignol biosynthetic networks in different cell types, which serve to underscore the fact that complexity of assembly need not be confused any further with random formation. Moreover, this analysis revealed another factor which continues to cloud interpretations of lignin downregulation/mutational analyses, namely the serious technical problems associated with all aspects of lignin characterization, whether for lignin quantification, isolation of lignin-enriched preparations and/or in determining monomeric compositions. For example, in the latter analyses, some 50-90% of the lignin components still cannot be detected using current methodologies, e.g. by thioacidolysis cleavage and nitrobenzene oxidative cleavage. This deficiency in lignin characterization thus represents one of the major hurdles remaining in delineating how lignin assembly (in distinct cell types) and their configuration actually occurs.


Assuntos
Engenharia Genética , Lignina/metabolismo , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Lignina/química , Lignina/genética , Estrutura Molecular , Plantas Geneticamente Modificadas/enzimologia
11.
J Biol Chem ; 277(21): 18272-80, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11891223

RESUMO

Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.


Assuntos
Carbono/metabolismo , Lignina/biossíntese , Pinus/metabolismo , Transcrição Gênica , Sequência de Bases , Clonagem Molecular , Primers do DNA , Dados de Sequência Molecular , Pinus/genética , Pinus taeda , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...