Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(2): 1597-1603, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28140563

RESUMO

Intrinsic constraints on efficient photoluminescence (PL) from smaller alkene-capped silicon nanocrystals (SiNCs) put limits on potential applications, but the root cause of such effects remains elusive. Here, plasma-synthesized colloidal SiNCs separated into monodisperse fractions reveal an abrupt size-dependent partitioning of multilevel PL relaxation, which we study as a function of temperature. Guided by theory and simulation, we explore the potential role of resonant phonon interactions with "minigaps" that emerge in the electronic density of states (DOS) under strong quantum confinement. Such higher-order structures can be very sensitive to SiNC surface chemistry, which we suggest might explain the common implication of surface effects in both the emergence of multimodal PL relaxation and the loss of quantum yield with decreasing nanocrystal size. Our results have potentially profound implications for optimizing the radiative recombination kinetics and quantum yield of smaller ligand-passivated SiNCs.

2.
ACS Appl Mater Interfaces ; 8(51): 35479-35484, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27983777

RESUMO

Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications such as light-emitting devices (LEDs), electronic displays, sensors, and solar-photovoltaics. To date, however, luminescent silicon nanocrystals have been used exclusively in traditional rigid devices, leaving a gap in knowledge regarding how they behave on elastomeric substrates. The present study shows how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (SiNCs) change when they are deposited on stretchable substrates made from polydimethylsiloxane (PDMS). Our results indicate that SiNCs deposited directly from the gas phase onto PDMS exhibit morphological changes, as well as modified aging characteristics due to enhanced oxidation. These results begin to fill the knowledge gap and point to the potential of using luminescent SiNC layers for flexible and stretchable electronics such as LEDs, displays, and sensors.

3.
Nanotechnology ; 27(32): 325703, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27348305

RESUMO

The light emission properties of silicon crystalline nanoparticles (SiNPs) have been investigated using steady-state and time-resolved photoluminescence measurements carried out at 12 K and at room temperature. To enable a comparative study of the role of surface terminal groups on the optical properties, we investigated SiNPs-H ensembles with the same mean NP diameter but differing on the surface termination, namely organic-functionalized with 1-dodecene (SiNPs-C12) and H-terminated (SiNPs-H). We show that although the spectral dependence of the light emission is rather unaffected by surface termination, characterized by a single broad band peaking at ∼1.64 eV, both the exciton recombination lifetimes and quantum yields display a pronounced dependence on the surface termination. Exciton lifetimes and quantum yields are found to be significantly lower in SiNPs-H compared SiNPs-C12. This difference is due to distinct non-radiative recombination probabilities resulting from inter-NP exciton migration, which in SiNPs-C12 is inhibited by the energy barriers imposed by the bulky surface groups. The surface groups of organic-terminated SiPs are responsible for the inhibition of inter-NP exciton transfer, yielding a higher quantum yield compared to SiNPs-H. The surface oxidation of SiNPs-C12 leads to the appearance of a phenomenon of an exciton transference from to the Si core to oxide-related states that contribute to light emission. These excitons recombine radiatively, explaining why the emission quantum of the organic-terminated SiNPs is the same after surface oxidation of SiNPs-C12.

4.
ACS Nano ; 9(10): 9772-82, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26348831

RESUMO

Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from "bright" nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.

5.
Sci Rep ; 5: 12469, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198209

RESUMO

Luminescent silicon nanocrystals (Si NCs) have attracted tremendous research interest. Their size dependent photoluminescence (PL) shows great promise in various optoelectronic and biomedical applications and devices. However, it remains unclear why the exciton emission is limited to energy below 2.1 eV, no matter how small the nanocrystal is. Here we interpret a nanosecond transient yellow emission band at 590 nm (2.1 eV) as a critical limit of the wavelength tunability in colloidal silicon nanocrystals. In the "large size" regime (d > ~3 nm), quantum confinement dominantly determines the PL wavelength and thus the PL peak blue shifts upon decreasing the Si NC size. In the "small size" regime (d < ~2 nm) the effect of the yellow band overwhelms the effect of quantum confinement with distinctly increased nonradiative trapping. As a consequence, the photoluminescence peak does not exhibit any additional blue shift and the quantum yield drops abruptly with further decreasing the size of the Si NCs. This finding confirms that the PL originating from the quantum confined core states can only exist in the red/near infrared with energy below 2.1 eV; while the blue/green PL originates from surface related states and exhibits nanosecond transition.

6.
Soft Matter ; 10(11): 1665-75, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24651856

RESUMO

The coupling between the 'coffee-ring' effect and liquid-liquid phase separation is examined for ternary mixtures of solvent, polymer and semiconductor nanocrystal. Specifically, we study mixtures of toluene, polystyrene (PS) and colloidal silicon nanocrystals (SiNCs) using real-space imaging and spectroscopic techniques to resolve the kinetic morphology of the drying front for varied molecular weight of the PS. Our results demonstrate that the size of the polymer has a significant impact on both phase-separation and drying, and we relate these observations to simulations, measured and predicted binodal curves, and the observed shape of the flow field at the contact line. The results inform a deposition process that reduces the influence of drying instabilities for low-molecular-weight polymers while paving the way for more detailed and generic computational descriptions of drying instabilities in complex fluids.


Assuntos
Nanopartículas/química , Polímeros/química , Cinética , Transição de Fase , Poliestirenos/química , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 5(10): 4233-8, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23627320

RESUMO

The photoluminescence (PL) of size-purified silicon nanocrystals is measured as a function of temperature and nanoparticle size for pure nanocrystal films and polydimethylsiloxane (PDMS) nanocomposites. The temperature dependence of the bandgap is the same for both sample types, being measurably different from that of bulk silicon because of quantum confinement. Our results also suggest weaker interparticle and environmental coupling in the nanocomposites, with enhanced PL and an unexpected dependence of lifetime on size for the pure nanocrystal films at low temperatures. We interpret these results through differences in the low-temperature size dependence of the ensemble nonradiative equilibrium constants. The response of the PDMS nanocomposites provides a consistent measure of local temperature through intensity, lifetime, and wavelength in a polymer-dispersed morphology suitable for biomedical applications, and we exploit this to fabricate a small-footprint fiber-optic cryothermometer. A comparison of the two sample types offers fundamental insight into the photoluminescent behavior of silicon nanocrystal ensembles.

8.
ACS Nano ; 6(8): 7389-96, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22809465

RESUMO

We report on the quantum yield, photoluminescence (PL) lifetime, and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from the fractions, and we use a combination of measurement, simulation, and modeling to link this "brightening" to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.


Assuntos
Cristalização/métodos , Medições Luminescentes , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Luz , Teste de Materiais , Tamanho da Partícula , Teoria Quântica , Espalhamento de Radiação , Silício/isolamento & purificação
9.
Nano Lett ; 12(6): 2822-5, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22519583

RESUMO

We present an all-gas-phase approach for the fabrication of nanocrystal-based light-emitting devices. In a single reactor, silicon nanocrystals are synthesized, surface-functionalized, and deposited onto substrates precoated with a transparent electrode. Devices are completed by evaporation of a top metal electrode. The devices exhibit electroluminescence centered at a wavelength of λ = 836 nm with a peak external quantum efficiency exceeding 0.02%. This all-gas-phase approach permits controlled deposition of dense, functional nanocrystal films suitable for application in electronic devices.


Assuntos
Cristalização/métodos , Gases/química , Iluminação/instrumentação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Semicondutores , Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...