Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959958

RESUMO

Unconventional quasiparticles emerging in the fractional quantum Hall regime1,2 present the challenge of observing their exotic properties unambiguously. Although the fractional charge of quasiparticles has been demonstrated since nearly three decades3-5, the first convincing evidence of their anyonic quantum statistics has only recently been obtained6,7 and, so far, the so-called scaling dimension that determines the quasiparticles' propagation dynamics remains elusive. In particular, while the non-linearity of the tunneling quasiparticle current should reveal their scaling dimension, the measurements fail to match theory, arguably because this observable is not robust to non-universal complications8-12. Here we expose the scaling dimension from the thermal to shot noise crossover, and observe an agreement with expectations. Measurements are fitted to the predicted finite temperature expression involving both the quasiparticles scaling dimension and their charge12,13, in contrast to previous charge investigations focusing on the high bias shot noise regime14. A systematic analysis, repeated on multiple constrictions and experimental conditions, consistently matches the theoretical scaling dimensions for the fractional quasiparticles emerging at filling factors ν =1/3 , 2/5 and 2/3. This establishes a central property of fractional quantum Hall anyons, and demonstrates a powerful and complementary window into exotic quasiparticles.

3.
Nat Commun ; 14(1): 7263, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945575

RESUMO

The Kondo effect, deriving from a local magnetic impurity mediating electron-electron interactions, constitutes a flourishing basis for understanding a large variety of intricate many-body problems. Its experimental implementation in tunable circuits has made possible important advances through well-controlled investigations. However, these have mostly concerned transport properties, whereas thermodynamic observations - notably the fundamental measurement of the spin of the Kondo impurity - remain elusive in test-bed circuits. Here, with a novel combination of a 'charge' Kondo circuit with a charge sensor, we directly observe the state of the impurity and its progressive screening. We establish the universal renormalization flow from a single free spin to a screened singlet, the associated reduction in the magnetization, and the relationship between scaling Kondo temperature and microscopic parameters. In our device, a Kondo pseudospin is realized by two degenerate charge states of a metallic island, which we measure with a non-invasive, capacitively coupled charge sensor. Such pseudospin probe of an engineered Kondo system opens the way to the thermodynamic investigation of many exotic quantum states, including the clear observation of Majorana zero modes through their fractional entropy.

4.
Nat Commun ; 14(1): 514, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720855

RESUMO

The scattering of exotic quasiparticles may follow different rules than electrons. In the fractional quantum Hall regime, a quantum point contact (QPC) provides a source of quasiparticles with field effect selectable charges and statistics, which can be scattered on an 'analyzer' QPC to investigate these rules. Remarkably, for incident quasiparticles dissimilar to those naturally transmitted across the analyzer, electrical conduction conserves neither the nature nor the number of the quasiparticles. In contrast with standard elastic scattering, theory predicts the emergence of a mechanism akin to the Andreev reflection at a normal-superconductor interface. Here, we observe the predicted Andreev-like reflection of an e/3 quasiparticle into a - 2e/3 hole accompanied by the transmission of an e quasielectron. Combining shot noise and cross-correlation measurements, we independently determine the charge of the different particles and ascertain the coincidence of quasielectron and fractional hole. The present work advances our understanding on the unconventional behavior of fractional quasiparticles, with implications toward the generation of novel quasi-particles/holes and non-local entanglements.

5.
Phys Rev Lett ; 128(14): 146803, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476492

RESUMO

Fractional entropy is a signature of nonlocal degrees of freedom, such as Majorana zero modes or more exotic non-Abelian anyons. Although direct experimental measurements remain challenging, Maxwell relations provide an indirect route to the entropy through charge measurements. Here we consider multichannel charge-Kondo systems, which are predicted to host exotic quasiparticles due to a frustration of Kondo screening at low temperatures. In the absence of experimental data for the charge occupation, we derive relations connecting the latter to the conductance, for which experimental results have recently been obtained. Our analysis indicates that Majorana and Fibonacci anyon quasiparticles are well developed in existing two- and three-channel charge-Kondo devices, and that their characteristic k_{B}logsqrt[2] and k_{B}log[(1+sqrt[5])/2] entropies are experimentally measurable.

6.
Nat Commun ; 10(1): 5638, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822660

RESUMO

When assembling individual quantum components into a mesoscopic circuit, the interplay between Coulomb interaction and charge granularity breaks down the classical laws of electrical impedance composition. Here we explore experimentally the thermal consequences, and observe an additional quantum mechanism of electronic heat transport. The investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node connected to one electronic channel and a resistance. Heating up the node with Joule dissipation, we separately determine, from complementary noise measurements, both its temperature and the thermal shot noise induced by the temperature difference across the channel. The thermal shot noise predictions are thereby directly validated, and the electronic heat flow is revealed. The latter exhibits a contribution from the channel involving the electrons' partitioning together with the Coulomb interaction. Expanding heat current predictions to include the thermal shot noise, we find a quantitative agreement with experiments.

7.
Science ; 366(6470): 1243-1247, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806813

RESUMO

The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of electron teleportation across a metallic island. This effect originates from the low-temperature freezing of the island's charge Q which, in the presence of a single connected electronic channel, enforces a one-to-one correspondence between incoming and outgoing electrons. Such faithful quantum state imprinting is established between well-separated injection and emission locations and evidenced through two-path interferences in the integer quantum Hall regime. The additional quantum phase of 2πQ/e, where e is the electron charge, may allow for decoherence-free entanglement of propagating electrons, and notably of flying qubits.

8.
Nat Commun ; 10(1): 2821, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249302

RESUMO

Power laws in physics have until now always been associated with a scale invariance originating from the absence of a length scale. Recently, an emergent invariance even in the presence of a length scale has been predicted by the newly-developed nonlinear-Luttinger-liquid theory for a one-dimensional (1D) quantum fluid at finite energy and momentum, at which the particle's wavelength provides the length scale. We present experimental evidence for this new type of power law in the spectral function of interacting electrons in a quantum wire using a transport-spectroscopy technique. The observed momentum dependence of the power law in the high-energy region matches the theoretical predictions, supporting not only the 1D theory of interacting particles beyond the linear regime but also the existence of a new type of universality that emerges at finite energy and momentum.

9.
Science ; 360(6395): 1315-1320, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29724906

RESUMO

Quantum phase transitions (QPTs) are ubiquitous in strongly correlated materials. However, the microscopic complexity of these systems impedes the quantitative understanding of QPTs. We observed and thoroughly analyzed the rich strongly correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. An unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly correlated phenomena.

10.
Nat Commun ; 7: 12908, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659941

RESUMO

Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behaviour, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometre-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometre-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way towards the sub-millikelvin range with additional thermalization and refrigeration techniques.

11.
Nature ; 536(7614): 58-62, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488797

RESUMO

In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

12.
Nature ; 526(7572): 233-6, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450056

RESUMO

Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

13.
Science ; 342(6158): 601-4, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24091707

RESUMO

Quantum physics predicts that there is a fundamental maximum heat conductance across a single transport channel and that this thermal conductance quantum, G(Q), is universal, independent of the type of particles carrying the heat. Such universality, combined with the relationship between heat and information, signals a general limit on information transfer. We report on the quantitative measurement of the quantum-limited heat flow for Fermi particles across a single electronic channel, using noise thermometry. The demonstrated agreement with the predicted G(Q) establishes experimentally this basic building block of quantum thermal transport. The achieved accuracy of below 10% opens access to many experiments involving the quantum manipulation of heat.

14.
Nat Commun ; 4: 1802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653214

RESUMO

In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

15.
Phys Rev Lett ; 109(2): 026803, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030194

RESUMO

We demonstrate a direct approach to investigate heat transport in the fractional quantum Hall regime. At a filling factor of ν=4/3, we inject power at quantum point contacts and detect the related heating from the activated current through a quantum dot. The experiment reveals a chargeless heat transport from a significant heating that occurs upstream of the power injection point, in the absence of a concomitant electrical current. By tuning in situ the edge path, we show that the chargeless heat transport does not follow the reverse direction of the electrical current path along the edge. This unexpected heat conduction, whose mechanism remains to be elucidated, may play an important role in the physics of the fractional quantum Hall regime.

16.
Phys Rev Lett ; 95(3): 036802, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16090763

RESUMO

In order to probe quantitatively the effect of Kondo impurities on energy exchange between electrons in metals, we have compared measurements on two silver wires with dilute magnetic impurities (manganese) introduced in one of them. The measurement of the temperature dependence of the electron phase coherence time on the wires provides an independent determination of the impurity concentration. Quantitative agreement on the energy exchange rate is found with a theory by Göppert et al. that accounts for Kondo scattering of electrons on spin-1/2 impurities.

17.
Phys Rev Lett ; 90(12): 127001, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12688893

RESUMO

We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent, leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic field.

18.
Phys Rev Lett ; 90(7): 076806, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12633262

RESUMO

In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals, we have measured the effect of a magnetic field B on the energy distribution function f(E) of quasiparticles in two silver wires driven out of equilibrium by a bias voltage U. In a sample showing sharp distributions at B=0, no magnetic field effect is found, whereas, in the other sample, rounded distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated interactions taking into account Kondo physics.

19.
Phys Rev Lett ; 86(6): 1078-81, 2001 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11178014

RESUMO

We have performed the tunnel spectroscopy of the energy distribution function of quasiparticles in 5-microm-long silver wires connected to superconducting reservoirs biased at different potentials. The distribution function f(E) presents several steps, which are manifestations of multiple Andreev reflections at the NS interfaces. The rounding of the steps is well explained by electron-electron interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...