Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 7(4)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34842699

RESUMO

The adsorption of Ni2+ ions from water solutions by using hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA) was studied. Hydrogel synthesis was optimized with response surface methodology (RSM). The hydrogel with the best adsorption capacity towards Ni2+ ions was chosen for further experiments. The hydrogel was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis before and after the adsorption of Ni2+ ions. Batch equilibrium experiments were conducted to investigate the influence of solution pH, hydrogel weight, ionic strength, adsorption time, temperature and initial concentration of nickel ions on the adsorption. Time-dependent adsorption fitted the best to the pseudo-second-order kinetic model. A thermodynamic study revealed that the adsorption was an exothermic and non-spontaneous process. Five isotherm models were studied, and the best fit was obtained with the Redlich-Peterson model. Consecutive adsorption/desorption studies indicated that the HEA/IA hydrogel can be efficiently used as a sorbent for the removal of Ni2+ ions from the water solution. This study develops a potential adsorbent for the effective removal of trace nickel ions.

2.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451210

RESUMO

Nowadays, unsaturated polyester resins (UPR) are mainly obtained from non-renewable resources. The ever-increasing regulations and the continuous demand for more sustainability have led to extensive research towards more environmentally suitable alternatives to petroleum-based materials. However, one of the main disadvantages of bio-based UPR is their relatively high viscosity compared to petrochemical ones. In order to overcome this drawback, in this work, we investigated the possibility to lower the resin viscosity utilizing a mixture of dimethyl itaconate (DMI) and methyl methacrylate (MMA) as a reactive diluent. The effect of the DMI and MMA ratio on resin rheological properties was investigated. The optimal curing parameters were determined and all UPRs had a high gel content, which was shown to be dependent on the DMI and MMA ratio in the formulation. Furthermore, thermomechanical and mechanical properties of the resulting network were also found to be affected by the used reactive diluent mixture. A small substitution of DMI by MMA proved to be advantageous since it offers lower resin viscosity and improved mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...