Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Russo | MEDLINE | ID: mdl-27213947

RESUMO

UNLABELLED: Low-intensity laser radiation can be used as one of the methods for the non-specific regulation of the human mesenchymal stem cell (MSC) activity at the preliminary stage of their in vitro cultivation. The objective of the present study was to estimate the influence of the limiting regimes of continuous low-intensity laser radiation (CLIR) of red (635 nm) and green (525 nm) spectra. MATERIAL AND METHODS: The adhesive culture of human mesenchymal stem cells obtained from a donor's umbilical cord tissue was used in the experiments (following 4 passages). They were irradiated using a Lazmik-VLOK laser therapeutic device equipped with the KLO-635-40 (635 nm, 4,9 mW/cm(2)) and KLO-525-50 (525 nm, 5,4 mW/cm(2)) laser diode emitting heads operating in a continuous mode. A special nozzle (jar) for laser and vacuum massage (KB-5, 35 cm in diameter) was employed to fix the heads. The exposure time in all the irradiation regimes was 5 minutes. CONCLUSION: The study has demonstrated that neither the morphological features nor the viability of mesenchymal stem cells was altered under the influence of laser irradiation at the aforementioned energy and time parameters. The data obtained indicate that laser irradiation with the limiting levels of the chosen energy parameters produces no positive effect on the cell proliferative activity; more than that, it may cause its inhibition.


Assuntos
Lasers , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Humanos
2.
Dalton Trans ; 45(3): 1192-200, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26661379

RESUMO

Highly homogeneous mullite-type solid solutions Bi2Fe(4-x)CrxO9 (x = 0.5, 1, 1.2) were synthesized using a soft chemistry technique followed by a solid-state reaction in Ar. The crystal structure of Bi2Fe3CrO9 was investigated using X-ray and neutron powder diffraction, transmission electron microscopy and (57)Fe Mössbauer spectroscopy (S.G. Pbam, a = 7.95579(9) Å, b = 8.39145(9) Å, c = 5.98242(7) Å, RF(X-ray) = 0.022, RF(neutron) = 0.057). The ab planes in the structure are tessellated with distorted pentagonal loops built up by three tetrahedrally coordinated Fe sites and two octahedrally coordinated Fe/Cr sites, linked together in the ab plane by corner-sharing forming a pentagonal Cairo lattice. Magnetic susceptibility measurements and powder neutron diffraction show that the compounds order antiferromagnetically (AFM) with the Néel temperatures decreasing upon increasing the Cr content from TN ∼ 250 K for x = 0 to TN ∼ 155 K for x = 1.2. The magnetic structure of Bi2Fe3CrO9 at T = 30 K is characterized by a propagation vector k = (1/2,1/2,1/2). The tetrahedrally coordinated Fe cations form singlet pairs within dimers of corner-sharing tetrahedra, but spins on the neighboring dimers are nearly orthogonal. The octahedrally coordinated (Fe,Cr) cations form antiferromagnetic up-up-down-down chains along c, while the spin arrangement in the ab plane is nearly orthogonal between nearest neighbors and collinear between second neighbors. The resulting magnetic structure is remarkably different from the one in pure Bi2Fe4O9 and features several types of spin correlations even on crystallographically equivalent exchange that may be caused by the simultaneous presence of Fe and Cr on the octahedral site.

3.
Dalton Trans ; 44(23): 10753-62, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25695142

RESUMO

A novel anion-deficient perovskite-based compound, Pb(2.4)Ba(2.6)Fe(2)Sc(2)TiO(13), was synthesized via the citrate-based route. This compound is an n = 5 member of the AnBnO(3n-2) homologous series with unit-cell parameters related to the perovskite subcell a(p)≈ 4.0 Å as a(p)√2 ×a(p)× 5a(p)√2. The crystal structure of Pb(2.4)Ba(2.6)Fe(2)Sc(2)TiO(13) consists of quasi-2D perovskite blocks with a thickness of three octahedral layers separated by the 1/2[110](1[combining macron]01)(p) crystallographic shear (CS) planes, which are parallel to the {110} plane of the perovskite subcell. The CS planes transform the corner-sharing octahedra into chains of edge-sharing distorted tetragonal pyramids. Using a combination of neutron powder diffraction, (57)Fe Mössbauer spectroscopy and atomic resolution electron energy-loss spectroscopy we demonstrate that the B-cations in Pb(2.4)Ba(2.6)Fe(2)Sc(2)TiO(13) are ordered along the {110} perovskite layers with Fe(3+) in distorted tetragonal pyramids along the CS planes, Ti(4+) preferentially in the central octahedra of the perovskite blocks and Sc(3+) in the outer octahedra of the perovskite blocks. Magnetic susceptibility and Mössbauer spectroscopy indicate a broadened magnetic transition around T(N)∼ 45 K and the onset of local magnetic fields at low temperatures. The magnetic order is probably reminiscent of that in other AnBnO(3n-2) homologues, where G-type AFM order within the perovskite blocks has been observed.

4.
Dalton Trans ; 44(23): 10708-13, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25672489

RESUMO

The crystal and magnetic structures of brownmillerite-like Sr(2)Co(1.2)Ga(0.8)O(5) with a stable Co(3+) oxidation state at both octahedral and tetrahedral sites are refined using neutron powder diffraction data collected at 2 K (S.G. Icmm, a = 5.6148(6) Å, b = 15.702(2) Å, c = 5.4543(6) Å; R(wp) = 0.0339, R(p) = 0.0443, χ(2) = 0.775). The very large tetragonal distortion of CoO(6) octahedra (1.9591(4) Å for Co-O(eq) and 2.257(6) Å for Co-O(ax)) could be beneficial for the stabilization of the long-sought intermediate-spin state of Co(3+) in perovskite-type oxides. However, the large magnetic moment of octahedral Co(3+) (3.82(7)µ(B)) indicates the conventional high-spin state of Co(3+) ions, which is further supported by the results of a combined theoretical and experimental soft X-ray absorption spectroscopy study at the Co-L(2,3) edges on Sr(2)Co(1.2)Ga(0.8)O(5). A high-spin ground state of Co(3+) in Sr(2)Co(1.2)Ga(0.8)O(5) resulted in much lower in comparison with a LaCoO(3) linear thermal expansion coefficient of 13.1 ppm K(-1) (298-1073 K) determined from high-temperature X-ray powder diffraction data collected in air.

5.
Artigo em Russo | MEDLINE | ID: mdl-25730934

RESUMO

INTRODUCTION: Mesenchymal stem cells (MSC) have for a long time been an object of investigation with a view to elucidating the prospects for their application in clinical medicine and cosmetology. One of the approaches to the non-specific regulation of the activity of these cells at the stage of preliminary in vitro combination is the treatment with low-intensity laser radiation (LILR). The objective of the present study was to evaluate the possibility of using pulsed LILR of the infrared and red spectra for this purpose. MATERIAL AND METHODS: We used the 4th passage adhesive MSC cultures based at the umbilical tissue of a donor who gave the informed consent to participate in the study. The source of illumination was a Lazmik-VLOK laser therapeutic apparatus (RU No RZN 2014/1410 dated 06.02.2014) with the matrix laser infrared radiation heads (wavelength 904 nm, light pulse length 108 ns, frequency 1500 Hz). The apparatus was operated either in the multi-frequency Lazmik regime [Moskvin S.V., 2014] with mean power density 0.05 and 0.14 mW/cm2 and the red spectrum (wavelength 635 nm, light pulse length 144 ns, frequency 1500 Hz) or in the multi-frequency Lazmik regime [Moskvin S.V., 2014] with mean power density 0.03 and 0.12. The exposition was 5 min in both regimes. CONCLUSION: The study has demonstrated that neither the morphological structure nor the viability of mesenchymal stem cells changed under the influence of energy and time parameters used in experiments. The number of cells was shown to slightly increase in comparison with control. The most pronounced effect was documented after illumination with pulse infrared (904 nm) LILR in the multi-frequency Lazmik regime. The maximum effect was observed during a period between days 1 and 3 of cultivation.


Assuntos
Raios Infravermelhos , Terapia com Luz de Baixa Intensidade/métodos , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Humanos , Terapia com Luz de Baixa Intensidade/instrumentação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Fatores de Tempo
6.
Inorg Chem ; 52(14): 7834-43, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23406197

RESUMO

Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 belong to the perovskite-based A(n)B(n)O(3n-2) homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell a(p) as a(p)√2 × a(p) × na(p)√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(101)p crystallographic shear (CS) planes. The CS operation results in (101)p-shaped perovskite blocks with a thickness of (n - 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb(1.5)Ba(2.5)Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned Fe-Fe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 A(n)Fe(n)O(3n-2) (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623-632 K.

7.
Inorg Chem ; 46(18): 7378-86, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17685606

RESUMO

The new ternary magnesium rhodium boride Mg2Rh1-xB6+2x has been prepared by the reaction of the mixture of Mg powder, RhB, and crystalline boron in a Ta container sealed under argon. The crystal structure of Mg2Rh0.75(1)B6.50(4) is determined using single-crystal X-ray diffraction, electron diffraction, and high-resolution electron microscopy (space group Pbam, a=8.795(2) A, b=11.060(2) A, c=3.5279(5) A, Z=4, 630 reflections, RF=0.045). It represents a modified Y2ReB6 structure type with an unusual replacement of part of the Rh atoms by boron pairs located in the pentagonal channels parallel to the c axis. The pairs interconnect the neighboring planar boron nets into the 3D framework. The variation of the lattice parameters reveals a homogeneity range Mg2Rh1-xB6+2x. The random distribution of the Rh atoms and boron pairs and the stabilizing effect of the boron pairs on the Y2ReB6 type structure motif are discussed using electronic band structure calculations and chemical bonding analysis with the electron localization function (ELF).

8.
Science ; 262(5130): 97-9, 1993 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17742966

RESUMO

The recently discovered homologous series HgBa(2)Can-1 Cun O2n+2+delta possesses remarkable properties. A superconducting transition temperature, T(c), as high as 133 kelvin has been measured in a multiphase Hg-Ba-Ca-Cu-O sample and found to be attributable to the Hg-1223 compound. Temperature-dependent electrical resistivity measurements under pressure on a (> 95%) pure Hg-1223 phase are reported. These data show that T(c) increases steadily with pressure at a rate of about 1 kelvin per gigapascal up to 15 gigapascals, then more slowly and reaches a T(c) = 150 kelvin, with the onset of the transition at 157 kelvin, for 23.5 gigapascals. This large pressure variation (as compared to the small effects observed in similar compounds with the optimal T(c)) strongly suggests that higher critical temperatures could be obtained at atmospheric pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...