Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 41(24): 3157-3165, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30922190

RESUMO

The demand for uniformly sized and shaped produce that are aesthetically pleasing results in significant food waste throughout the world. Cucumber waste is a major agricultural waste product in a number of countries, especially areas with high pickle production. Opportunity exists for wastewater treatment plants containing anaerobic digesters to utilize cucumber agricultural and industrial waste for biogas production. The biomethane potential of cucumber waste as a substrate for co-digestion with sewage sludge was assessed. The impact of long-term co-digestion of cucumber was then evaluated using mesophilic continuously stirred tank reactors (CSTRs), in both single- and two-stage anaerobic co-digestion with sewage sludge. Ground cucumber waste was added to sewage sludge at 8% of the volume (4.5-4.6% of the organic load) and CSTRs were maintained for five hydraulic retention times (HRTs). One-stage co-digestion of cucumber waste produced comparable gas levels as CSTRs without cucumbers (averaging 219 and 221 m3/kgVS/h, respectively) after two HRTs. The two-stage cucumber co-digestion CSTR averaged 64% higher specific gas than the control and single-stage digester, although the volumetric gas produced was lower (averaging 152 m3/kgVS/h) likely due to gas loss in the first stage resulting in a lower organic load rate. After four HRTs, relative methanogen content showed dramatic differences in levels of hydrogenotrophic methanogens for the two-stage digester, while the one-stage digester containing cucumber waste showed minor differences relative to the control. Cucumber waste co-digestion with sewage sludge is effective although numerous conditions could be utilized to optimize gas production.


Assuntos
Cucumis sativus , Eliminação de Resíduos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Alimentos , Metano , Esgotos
2.
Waste Manag ; 34(12): 2567-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25249492

RESUMO

In an effort to convert waste streams to energy in a green process, glycerol from biodiesel manufacturing has been used to increase the gas production and methane content of biogas within a mesophilic anaerobic co-digestion process using primary sewage sludge. Glycerol was systematically added to the primary digester from 0% to 60% of the organic loading rate (OLR). The optimum glycerol loading range was from 25% to 60% OLR. This resulted in an 82-280% improvement in specific gas production. Following the feeding schedule described, the digesters remained balanced and healthy until inhibition was achieved at 70% glycerol OLR. This suggests that high glycerol loadings are possible if slow additions are upheld in order to allow the bacterial community to adjust properly. Waste water treatment plant operators with anaerobic digesters can use the data to increase loadings and boost biogas production to enhance energy conversion. This process provides a safe, environmentally friendly method to convert a typical waste stream to an energy stream of biogas.


Assuntos
Biocombustíveis/análise , Glicerol/metabolismo , Metano/biossíntese , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Bactérias , Reatores Biológicos , Esgotos/microbiologia , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...