Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535683

RESUMO

The main objective of this study was to determine the variation in the properties of cadmium telluride (CdTe) thin films deposited on a p-type Si substrate by the radio frequency magnetron sputtering technique at four different working powers (70 W, 80 W, 90 W, and 100 W). The substrate temperature, working pressure, and deposition time during the deposition process were kept constant at 220 °C, 0.46 Pa, and 30 min, respectively. To study the structural, morphological, and optical properties of the CdTe films grown under the mentioned experimental conditions, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical spectroscopy were used. For a better analysis of the films' structural and optical properties, a group of films were deposited onto optical glass substrates under similar deposition conditions. The electrical characterisation of Ag/CdTe/Al "sandwich" structures was also performed using current-voltage characteristics in the dark at different temperatures. The electrical measurements allowed the identification of charge transport mechanisms through the structure. New relevant information released by the present study points towards 90 W RF power as the optimum for obtaining a high crystallinity of ~1 µm nanostructured thin films deposited onto p-Si and optical glass substrates with optical and electrical properties that are suitable for use as absorber layers. The obtained high-quality CdTe nanostructured thin films are perfectly suitable for use as absorbers in CdTe thin-film photovoltaic cells.

2.
Nanoscale ; 15(33): 13708-13717, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37564030

RESUMO

This paper reports on the preparation and the characterization of structural, electrical and thermoelectric properties of nanocomposite films formed from three-dimensional networks of polycrystalline bismuth (Bi) nanowires (NWs). The samples were fabricated by electrodeposition within polycarbonate (PC) templates with crossed cylindrical nanopores, yielding self-supported networks of Bi crossed nanowires (CNWs) with mean diameter values ranging from 23 nm to 230 nm. Temperature changes in electrical resistance and thermopower were studied by considering electric and thermal currents flowing in the plane of the films. While the values of the Seebeck coefficient are close to those of polycrystalline Bi for diameters greater than 100 nm, a progressive decrease in thermopower appears at smaller diameters, due to an increasing contribution of surface charge carriers as the diameter decreases. Transverse thermoelectricity based on the Nernst effect was also demonstrated on a network of Bi CNWs 230 nm in diameter. Such hierarchical architectures based on Bi CNWs are extremely robust, offering a reliable solution for the next generation of flexible thermoelectric devices.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296891

RESUMO

The development of novel nanomaterials became a subject of intensive research, due to high market needs for innovative applications in virtually all aspects of life [...].

4.
Biosensors (Basel) ; 12(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36004969

RESUMO

Environmental pollution with cadmium (Cd) is a major concern worldwide, with prolonged exposure to this toxic heavy metal causing serious health problems, such as kidney damage, cancer, or cardiovascular diseases, only to mention a few. Herein, a gold-coated reflection-type fiber optic--surface plasmon resonance (Au-coated FO-SPR) sensor is manufactured and functionalized with (i) bovine serum albumin (BSA), (ii) chitosan, and (iii) polyaniline (PANI), respectively, for the sensitive detection of cadmium ions (Cd2+) in water. Then, the three sensor functionalization strategies are evaluated and compared one at a time. Out of these strategies, the BSA-functionalized FO-SPR sensor is found to be highly sensitive, exhibiting a limit of detection (LOD) for Cd2+ detection at nM level. Moreover, the presence of Cd2+ on the FO-SPR sensor surface was confirmed by the X-ray photoelectron spectroscopy (XPS) technique and also quantified consecutively for all the above-mentioned functionalization strategies. Hence, the BSA-functionalized FO-SPR sensor is sensitive, provides a rapid detection time, and is cheap and portable, with potential applicability for monitoring trace-level amounts of Cd within environmental or potable water.


Assuntos
Água Potável , Ressonância de Plasmônio de Superfície , Cádmio/análise , Tecnologia de Fibra Óptica , Íons , Soroalbumina Bovina , Ressonância de Plasmônio de Superfície/métodos
5.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34835604

RESUMO

Zinc selenide (ZnSe) thin films were deposited by RF magnetron sputtering in specific conditions, onto optical glass substrates, at different RF plasma power. The prepared ZnSe layers were afterwards subjected to a series of structural, morphological, optical and electrical characterizations. The obtained results pointed out the optimal sputtering conditions to obtain ZnSe films of excellent quality, especially in terms of better optical properties, lower superficial roughness, reduced micro-strain and a band gap value closer to the one reported for the ZnSe bulk semiconducting material. Electrical characterization were afterwards carried out by measuring the current-voltage (I-V) characteristics at room temperature, of prepared "sandwich"-like Au/ZnSe/Au structures. The analysis of I-V characteristics have shown that at low injection levels there is an Ohmic conduction, followed at high injection levels, after a well-defined transition voltage, by a Space Charge Limited Current (SCLC) in the presence of an exponential trap distribution in the band gap of the ZnSe thin films. The results obtained from all the characterization techniques presented, demonstrated thus the potential of ZnSe thin films sputtered under optimized RF plasma conditions, to be used as alternative environmentally-friendly Cd-free window layers within photovoltaic cells manufacturing.

6.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578602

RESUMO

Zinc telluride thin films with different thicknesses were grown onto glass substrates by the rf magnetron sputtering technique, using time as a variable growth parameter. All other deposition process parameters were kept constant. The deposited thin films with thickness from 75 to 460 nm were characterized using X-ray diffraction, electron microscopy, atomic force microscopy, ellipsometry, and UV-Vis spectroscopy, to evaluate their structures, surface morphology, topology, and optical properties. It was found out that the deposition time increase leads to a larger growth rate. This determines significant changes on the ZnTe thin film structures and their surface morphology. Characteristic surface metrology parameter values varied, and the surface texture evolved with the thickness increase. Optical bandgap energy values slightly decreased as the thickness increased, while the mean grains radius remained almost constant at ~9 nm, and the surface to volume ratio of the films decreased by two orders of magnitude. This study is the first (to our knowledge) that thoroughly considered the correlation of film thickness with ZnTe structuring and surface morphology characteristic parameters. It adds value to the existing knowledge regarding ZnTe thin film fabrication, for various applications in electronic and optoelectronic devices, including photovoltaics.

7.
Sensors (Basel) ; 21(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205475

RESUMO

In this work, we report results on the fabrication and characterization of a surface plasmon resonance (SPR) pH sensor using platinum (Pt) and polyaniline (PANI) layers successively coated over an unclad core of an optical fiber (FO). The plasmonic thin Pt layer was deposited using a magnetron sputtering technique, while the pH-sensitive PANI layer was synthesized using an electroless polymerization method. Moreover, the formation of PANI film was confirmed by X-ray photoelectron spectroscopy (XPS) technique and its surface morphology was investigated using scanning electron microscopy (SEM). It was found that the PANI/Pt-coated FO-SPR pH sensor exhibits a fast and linear response in either acid or alkali solutions (pH operational range: 1 to 14). The proposed FO-SPR sensor could be used for biomedical applications, environmental monitoring or any remote, real-time on-site measurements.


Assuntos
Tecnologia de Fibra Óptica , Ressonância de Plasmônio de Superfície , Compostos de Anilina , Concentração de Íons de Hidrogênio
8.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062800

RESUMO

Polymer electrolyte membrane fuel cells require cheap and active electrocatalysts to drive the oxygen reduction reaction. Nitrogen-doped carbons have been extensively studied regarding their oxygen reduction reaction. The work at hand looks beyond the nitrogen chemistry and brings to light the role of oxygen. Nitrogen-doped nanocarbons were obtained by a radio-frequency plasma route at 0, 100, 250, and 350 W. The lateral size of the graphitic domain, determined from Raman spectroscopy, showed that the nitrogen plasma treatment decreased the crystallite size. Synchrotron radiation photoelectron spectroscopy showed a similar nitrogen chemistry, albeit the nitrogen concentration increased with the plasma power. Lateral crystallite size and several nitrogen moieties were plotted against the onset potential determined from oxygen reduction reaction curves. There was no correlation between the electrochemical activity and the sample structure, as determine from Raman and synchrotron radiation photoelectron spectroscopy. Near-edge X-ray absorption fine structure (NEXAFS) was performed to unravel the carbon and nitrogen local structure. A difference analysis of the NEXAFS spectra showed that the oxygen surrounding the pyridinic nitrogen was critical in achieving high onset potentials. The work shows that there were more factors at play, other than carbon organization and nitrogen chemistry.

9.
Sci Rep ; 11(1): 10086, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980883

RESUMO

The paper reports for the first time an innovative polyaniline (PANI)/platinum (Pt)-coated fiber optic-surface plasmon resonance (FO-SPR) sensor used for highly-sensitive 4-nitrophenol (4-NP) pollutant detection. The Pt thin film was coated over an unclad core of an optical fiber (FO) using a DC magnetron sputtering technique, while the 4-NP responsive PANI layer was synthetized using a cost-effective electroless polymerization method. The presence of the electrolessly-grown PANI on the Pt-coated FO was observed by field-emission scanning electron microscopy and subsequently evidenced by energy dispersive X-ray analysis. These FO-SPR sensors with a demonstrated bulk sensitivity of 1515 nm/RIU were then employed for 4-NP sensing, exhibiting an excellent limit-of-detection (LOD) in the low picomolar range (0.34 pM). The proposed sensor's configuration has many other advantages, such as low-cost production, small size, immunity to electromagnetic interferences, remote sensing capability, and moreover, can be operated as a "stand-alone device", making it thus well-suited for applications such as "on-site" screening of extremely low-level trace pollutants.

10.
Sci Rep ; 11(1): 5055, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658564

RESUMO

In the present study, the synthesis of titanium nitride (TiN) by carbothermal reduction nitridation (CRN) reaction using nanocomposites made of mesoporous TiO2/acrylonitrile with different content of inorganic phase were explored. The choice of hybrid nanocomposite as precursor for the synthesis of TiN was made due to the possibility of having an intimate interface between the organic and inorganic phases in the mixture that can favours CRN reaction. Subsequently, the hybrid composites have been subjected to four-step thermal treatments at 290 °C, 550 °C, 1000 °C and 1400 °C under nitrogen atmosphere. The XRD results after thermal treatment at 1000 °C under nitrogen flow show the coexistence of two crystalline phases of TiO2, i.e. anatase and rutile, as well as TiN phase, together with the detection of amorphous carbon that proved the initiation of CRN reaction. Furthermore, the observations based on XRD patterns of samples thermally treated at 1400 °C in nitrogen atmosphere were in agreement with SEM analysis, that shows the formation of TiN by CRN reaction via hybrid nanocomposites mesoporous TiO2/acrylonitrile.

11.
Nanomaterials (Basel) ; 10(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297342

RESUMO

We report the facile and low-cost preparation as well as detailed characterization of dense arrays of passivated ferromagnetic nickel (Ni) nanotubes (NTs) vertically-supported onto solid Au-coated Si substrates. The proposed fabrication method relies on electrochemical synthesis within the nanopores of a supported anodic aluminum oxide (AAO) template and allows for fine tuning of the NTs ferromagnetic walls just by changing the cathodic reduction potential during the nanostructures' electrochemical growth. Subsequently, the experimental platform allowed further passivation of the Ni NTs with the formation of ultra-thin antiferromagnetic layers of nickel oxide (NiO). Using adequately adapted magnetic measurements, we afterwards demonstrated that the thickness of the NT walls and of the thin antiferromagneticNiO layer, strongly influences the magnetic behavior of the dense array of exchange-coupled Ni/NiO NTs. The specific magnetic properties of these hybrid ferromagnetic/antiferromagnetic nanosystems were then correlated with the morpho-structural and geometrical parameters of the NTs, as well as ultimately strengthened by additionally-implemented micromagnetic simulations. The effect of the unidirectional anisotropy strongly amplified by the cylindrical geometry of the ferromagnetic/antiferromagnetic interfaces has been investigated with the magnetic field applied both parallel and perpendicular to the NTs axis.

12.
Adv Mater ; 29(6)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27918116

RESUMO

A nanopatterned hybrid layer is designed, wherein the electric polarization can be flipped at room temperature by a magnetic field aided by an electrical field. This is achieved by embedding ferromagnetic nanopillars in a continuous organic ferroelectric layer, and amplifying the magnetostriction-generated stress gradients by scaling down the supracrystalline cell of the material.

13.
Nanotechnology ; 23(25): 255602, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22653118

RESUMO

We report an easy one-step template-free electrodeposition method for preparing large arrays of ZnO hexagonal nanocolumns, vertically oriented on a Au-coated Si substrate. Systematic scanning electron microscopy investigations revealed the potential of this method for obtaining a high degree of verticality and orientation of the nanostructures and for controlling their aspect-ratio in an easy manner. Further structural studies demonstrated that the as-obtained ZnO nanocolumns present a well defined hexagonal symmetry exhibiting an excellent crystallinity.

14.
Nano Lett ; 7(9): 2563-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17715984

RESUMO

We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena. The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin-polarized current were clearly demonstrated in our electrodeposited NiFe/Cu/ NiFe trilayer nanowires. This novel approach promises to be of strong interest for subsequent fabrication of phase-locked arrays of spin transfer nano-oscillators with increased output power for microwave applications.


Assuntos
Cobre/química , Cristalização/métodos , Ferro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos/química , Níquel/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Marcadores de Spin , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...