Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473637

RESUMO

In this paper, the influences of two post-heat treatments on the structural, mechanical and corrosion resistance properties of additively manufactured Ti6Al4V alloys were discussed in detail. The materials were produced using the laser engineering net shaping (LENS) technique, and they were subjected to annealing without pressure and hot isostatic pressing (HIP) under a pressure of 300 MPa for 30 min at temperatures of 950 °C and 1050 °C. Annealing without pressure led to the formation of a thin plate structure, which was accompanied by decreasing mechanical properties and increasing elongation and corrosion resistance values. For the HIP process, the formation of a thick plate structure could be observed, resulting in the material exhibiting optimal mechanical properties and unusually high elongation. The best mechanical and corrosion resistance properties were obtained for the material subjected to HIP at 950 °C.

2.
Materials (Basel) ; 13(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586058

RESUMO

The effect of Nb content on microstructure, mechanical properties and superelasticity was investigated for a series of Ti-xNb alloys, fabricated by the laser engineered net shaping method, using elemental Ti and Nb powders. The microstructure of as-deposited materials consisted of columnar ß-phase grains, elongated in the built direction. However, due to the presence of undissolved Nb particles during the deposition process, an additional heat treatment was necessary. The observed changes in mechanical properties were explained in relation to the phase constituents and deformation mechanisms. Due to the elevated oxygen content in the investigated materials (2 at.%), the specific deformation mechanisms were observed at lower Nb content in comparison to the conventionally fabricated materials. This made it possible to conclude that oxygen increases the stability of the ß phase in ß-Ti alloys. For the first time, superelasticity was observed in Ti-Nb-based alloys fabricated by the additive manufacturing method. The highest recoverable strain of 3% was observed in Ti-19Nb alloy as a result of high elasticity and reverse martensitic transformation stress-induced during the loading.

3.
Materials (Basel) ; 12(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991637

RESUMO

Laser Engineered Net Shaping (LENSTM) is currently a promising and developing technique. It allows for shortening the time between the design stage and the manufacturing process. LENS is an alternative to classic metal manufacturing methods, such as casting and plastic working. Moreover, it enables the production of finished spatial structures using different types of metallic powders as starting materials. Using this technology, thin-walled honeycomb structures with four different cell sizes were obtained. The technological parameters of the manufacturing process were selected experimentally, and the initial powder was a spherical Ti6Al4V powder with a particle size of 45-105 µm. The dimensions of the specimens were approximately 40 × 40 × 10 mm, and the wall thickness was approximately 0.7 mm. The geometrical quality and the surface roughness of the manufactured structures were investigated. Due to the high cooling rates occurring during the LENS process, the microstructure for this alloy consists only of the martensitic α' phase. In order to increase the mechanical parameters, it was necessary to apply post processing heat treatment leading to the creation of a two-phase α + ß structure. The main aim of this investigation was to study the energy absorption of additively manufactured regular cellular structures with a honeycomb topology under static and dynamic loading conditions.

4.
Materials (Basel) ; 12(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884821

RESUMO

This paper presents a characterization study of specimens manufactured from Ti-6Al-4V powder with the use of laser engineered net shaping technology (LENS). Two different orientations of the specimens were considered to analyze the loading direction influence on the material mechanical properties. Moreover, two sets of specimens, as-built (without heat treatment) and after heat treatment, were used. An optical measurement system was also adopted for determining deformation of the specimen, areas of minimum and the maximum principal strain, and an effective plastic strain value at failure. The loading direction dependence on the material properties was observed with a significant influence of the orientation on the stress and strain level. Microstructure characterization was examined with the use of optical and scanning electron microscopes (SEM); in addition, the electron backscatter diffraction (EBSD) was also used. The fracture mechanism was discussed based on the fractography analysis. The presented comprehensive methodology proved to be effective and it could be implemented for different materials in additive technologies. The material data was used to obtain parameters for the selected constitutive model to simulate the energy absorbing structures manufactured with LENS technology. Therefore, a brief discussion related to numerical modelling of the LENS Ti-6Al-4V alloy was also included in the paper. The numerical modelling confirmed the correctness of the acquired material data resulting in a reasonable reproduction of the material behavior during the cellular structure deformation process.

5.
Materials (Basel) ; 11(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783704

RESUMO

The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...