Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(22): 9270-9280, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38864003

RESUMO

Transition metal thiophosphates (MPS3) are of great interest due to their layered structure and magnetic properties. Although HgPS3 may not exhibit magnetic properties, its uniqueness lies in its triclinic crystal structure and in the substantial mass of mercury, rendering it a compelling subject for exploration in terms of fundamental properties. In this work, we present comprehensive experimental and theoretical studies of the electronic band structure and optical properties for the HgPS3 crystal and mechanically exfoliated layers from a solid crystal. Based on absorption, reflectance and photoluminescence measurements supported by theoretical calculations, it is shown that the HgPS3 crystal has an indirect gap of 2.68 eV at room temperature. The direct gap is identified at the Γ point of the Brillouin zone (BZ) ≈ 50 meV above the indirect gap. The optical transition at the Γ point is forbidden due to selection rules, but the oscillator strength near the Γ point increases rapidly and therefore the direct optical transitions are visible in the reflectance spectra approximately at 60-120 meV above the absorption edge, across the temperature range of 40 to 300 K. The indirect nature of the bandgap and the selection rules for Γ point contribute to the absence of near-bandgap emission in HgPS3. Consequently, the photoluminescence spectrum is primarily governed by defect-related emission. The electronic band structure of HgPS3 undergoes significant changes when the crystal thickness is reduced to tri- and bilayers, resulting in a direct bandgap. Interestingly, in the monolayer regime, the fundamental transition is again indirect. The layered structure of the HgPS3 crystal was confirmed by scanning electron microscopy (SEM) and by mechanical exfoliation.

2.
ACS Appl Mater Interfaces ; 16(19): 24514-24524, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687904

RESUMO

Given the challenging task of constructing an efficient nitrogen reduction reaction (NRR) electrocatalyst with enhanced ambient condition performance, properties such as high specific surface area, fast electron transfer, and design of the catalyst surface constitute a group of key factors to be taken into consideration to guarantee outstanding catalytic performance and durability. Thereof, this work investigates the contribution of the 2D/2D heterojunction interface between MoS2 and reduced graphene oxide (rGO) on the electrocatalytic synthesis of NH3 in an alkaline media. The results revealed remarkable NRR performance on the MoS2@rGO 2D/2D hybrid electrocatalyst, characterized by a high NRR sensitivity (faradaic efficiency) of 34.7% with an NH3 yield rate of 3.98 ± 0.19 mg h-1 cm-2 at an overpotential of -0.3 V vs RHE in 0.1 M KOH solution. The hybrid electrocatalysts also exhibited selectivity for NH3 synthesis against the production of the hydrazine (N2H4) byproduct, hindrance of the competitive hydrogen evolution reaction (HER), and good durability over an operation period of 8 h. In hindsight, the study presented a low-cost and highly efficient catalyst design for achieving enhanced ammonia synthesis in alkaline media via the formation of defect-rich ultrathin MoS2@rGO nanostructures, consisting predominantly of an HER-hindering hexagonal 2H-MoS2 phase.

3.
Small Methods ; : e2301461, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243881

RESUMO

This research examines vanadium-deficient V2 C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2 C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+ /V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.

4.
Small Methods ; 8(5): e2300609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158388

RESUMO

Recent studies dedicated to layered van der Waals crystals have attracted significant attention to magnetic atomically thin crystals offering unprecedented opportunities for applications in innovative magnetoelectric, magneto-optic, and spintronic devices. The active search for original platforms for the low-dimensional magnetism study has emphasized the entirely new magnetic properties of two dimensional (2D) semiconductor CrSBr. Herein, for the first time, the electrochemical exfoliation of bulk CrSBr in a non-aqueous environment is demonstrated. Notably, crystal cleavage governed by the structural anisotropy occurred along two directions forming atomically thin and few-layered nanoribbons. The exfoliated material possesses an orthorhombic crystalline structure and strong optical anisotropy, showing the polarization dependencies of Raman signals. The antiferromagnetism exhibited by multilayered CrSBr gives precedence to ferromagnetic ordering in the revealed CrSBr nanostructures. Furthermore, the potential application of CrSBr nanoribbons is pioneered for electrochemical photodetector fabrication and demonstrates its responsivity up to 30 µA cm-2 in the visible spectrum. Moreover, the CrSBr-based anode for lithium-ion batteries exhibited high performance and self-improving abilities. This anticipates that the results will pave the way toward the future study of CrSBr and practical applications in magneto- and optoelectronics.

5.
Nanoscale ; 15(30): 12648-12659, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37464871

RESUMO

The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 µg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.

6.
ACS Appl Mater Interfaces ; 15(1): 1859-1870, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541490

RESUMO

Photodetectors and sensors have a prominent role in our lives and cover a wide range of applications, including intelligent systems and the detection of harmful and toxic elements. Although there have been several studies in this direction, their practical applications have been hindered by slow response and low responsiveness. To overcome these problems, we have presented here a self-powered (photoelectrochemical, PEC), ultrasensitive, and ultrafast photodetector platform. For this purpose, a novel few-layered palladium-phosphorus-sulfur (PdPS) was fabricated by shear exfoliation for effective photodetection as a practical assessment. The characterization of this self-powered broadband photodetector demonstrated superior responsivity and specific detectivity in the order of 33 mA W-1 and 9.87 × 1010 cm Hz1/2 W-1, respectively. The PEC photodetector also exhibits a broadband photodetection capability ranging from UV to IR spectrum, with the ultrafast response (∼40 ms) and recovery time (∼50 ms). In addition, the novel few-layered PdPS showed superior sensing ability to organic vapors with ultrafast response and a recovery time of less than 1 s. Finally, the photocatalytic activity in the form of hydrogen evolution reaction was explored due to the suitable band alignment and pronounced light absorption capability. The self-powered sensing platforms and superior catalytic activity will pave the way for practical applications in efficient future devices.

7.
RSC Adv ; 12(33): 21440-21451, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975088

RESUMO

The application of N-doped carbon nanosheets, with and without embedded carbon dots, as active materials for the room temperature chemoresistive detection of methanol and/or ethanol is presented. The new carbons were made by converting 0D N-doped carbon dots (NCDs) to 2D nitrogen-doped carbon nanosheets by heat treatment (200-700 °C). The nanosheets exhibited a lateral size of ∼3 µm and a thickness of ∼12 nm at the highest annealing temperature. Both Raman and TEM analyses showed morphological transitions of the dots to the sheets, whilst XPS analysis revealed transformation of the N-bonding states with increasing temperature. PDF analysis confirmed the presence of defective carbon sheets. Room temperature screening of the chemical vapours of two alcohols (methanol and ethanol), revealed that the structure and the type of N-configuration influenced the detection of the chemical vapours. For instance, the lateral size of the nanosheets and the high charge density N-configurations promoted detection of both methanol and ethanol vapours at good sensitivity (-16.8 × 10-5 ppm-1 EtOH and 1.2 × 10-5 ppm-1 MeOH) and low LoD (∼44 ppmEtOH and ∼30.3 ppmMeOH) values. The study showed that the composite nature as well as the large basal area of the carbon nanosheets enabled generation of adequate defective sites that facilitated easy adsorption of the VOC analyte molecules, thereby eliminating the need to use conducting polymers or the formation of porous molecular frameworks for the alcohol detection.

8.
ACS Appl Mater Interfaces ; 14(30): 34963-34974, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876692

RESUMO

Bismuth telluride halides (BiTeX) are Rashba-type crystals with several potential applications ranging from spintronics and nonlinear optics to energy. Their layered structures and low cleavage energies allow their production in a two-dimensional form, opening the path to miniaturized device concepts. The possibility to exfoliate bulk BiTeX crystals in the liquid represents a useful tool to formulate a large variety of functional inks for large-scale and cost-effective device manufacturing. Nevertheless, the exfoliation of BiTeI by means of mechanical and electrochemical exfoliation proved to be challenging. In this work, we report the first ultrasonication-assisted liquid-phase exfoliation (LPE) of BiTeI crystals. By screening solvents with different surface tension and Hildebrandt parameters, we maximize the exfoliation efficiency by minimizing the Gibbs free energy of the mixture solvent/BiTeI crystal. The most effective solvents for the BiTeI exfoliation have a surface tension close to 28 mN m-1 and a Hildebrandt parameter between 19 and 25 MPa0.5. The morphological, structural, and chemical properties of the LPE-produced single-/few-layer BiTeI flakes (average thickness of ∼3 nm) are evaluated through microscopic and optical characterizations, confirming their crystallinity. Second-harmonic generation measurements confirm the non-centrosymmetric structure of both bulk and exfoliated materials, revealing a large nonlinear optical response of BiTeI flakes due to the presence of strong quantum confinement effects and the absence of typical phase-matching requirements encountered in bulk nonlinear crystals. We estimated a second-order nonlinearity at 0.8 eV of |χ(2)| ∼ 1 nm V-1, which is 10 times larger than in bulk BiTeI crystals and is of the same order of magnitude as in other semiconducting monolayers (e.g., MoS2).

9.
ACS Appl Mater Interfaces ; 14(30): 34867-34874, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35856643

RESUMO

Black phosphorus (BP) has been among the most widely explored materials in recent years because of its exceptional properties. A vapor transport method using tin and iodide as mineralizers was used to synthesize large crystals which can be used for fundamental physical characterization including electrical and heat transport and heat capacity. This method is compared to other reported procedures (high-pressure crystal growth and mercury catalysis) which are broadly used and the most dominant procedures for the obtainment of bulk layered BP. In addition, we have investigated any possible impurities which could have been introduced by synthesis and their possible incorporation into BP and their influence on the physical properties of BP.

10.
Inorg Chem ; 61(14): 5524-5538, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35344664

RESUMO

Nitrogen reduction to ammonia under ambient conditions has received important attention, in which high-performing catalysts are sought. A new, facile, and seedless solvothermal method based on a high-temperature reduction route has been developed in this work for the production of bismuthene nanostructures with excellent performance in the electrocatalytic nitrogen reduction reaction (NRR). Different reaction conditions were tested, such as the type of solvent, surfactant, reducing agent, reaction temperature, and time, as well as bismuth precursor source, resulting in distinct particle morphologies. Two-dimensional sheet-like structures and small particles displayed very high electrocatalytic activity, attributed to the abundance of tips, edges, and high surface area. NRR experiments resulted in an ammonia yield of 571 ± 0.1 µg h-1 cm-2 with a respective Faradaic efficiency of 7.94 ± 0.2% vs Ag/AgCl. The easy implementation of the synthetic reaction to produce Bi nanostructures facilitates its potential scale up to larger production yields.

11.
Sustain Energy Fuels ; 6(23): 5345-5359, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36776412

RESUMO

Hybrid organic-inorganic perovskite solar cells (PSCs) are attractive printable, flexible, and cost-effective optoelectronic devices constituting an alternative technology to conventional Si-based ones. The incorporation of low-dimensional materials, such as two-dimensional (2D) materials, into the PSC structure is a promising route for interfacial and bulk perovskite engineering, paving the way for improved power conversion efficiency (PCE) and long-term stability. In this work, we investigate the incorporation of 2D bismuth telluride iodide (BiTeI) flakes as additives in the perovskite active layer, demonstrating their role in tuning the interfacial energy-level alignment for optimum device performance. By varying the concentration of BiTeI flakes in the perovskite precursor solution between 0.008 mg mL-1 and 0.1 mg mL-1, a downward shift in the energy levels of the perovskite results in an optimal alignment of the energy levels of the materials across the cell structure, as supported by device simulations. Thus, the cell fill factor (FF) increases with additive concentration, reaching values greater than 82%, although the suppression of open circuit voltage (V oc) is reported beyond an additive concentration threshold of 0.03 mg mL-1. The most performant devices delivered a PCE of 18.3%, with an average PCE showing a +8% increase compared to the reference devices. This work demonstrates the potential of 2D-material-based additives for the engineering of PSCs via energy level optimization at perovskite/charge transporting layer interfaces.

12.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947718

RESUMO

Copper selenide-sulfide nanostructures were synthesized using metal-organic chemical routes in the presence of Cu- and Se-precursors as well as S-containing compounds. Our goal was first to examine if the initial Cu/Se 1:1 molar proportion in the starting reagents would always lead to equiatomic composition in the final product, depending on other synthesis parameters which affect the reagents reactivity. Such reaction conditions were the types of precursors, surfactants and other reagents, as well as the synthesis temperature. The use of 'hot-injection' processes was avoided, focusing on 'non-injection' ones; that is, only heat-up protocols were employed, which have the advantage of simple operation and scalability. All reagents were mixed at room temperature followed by further heating to a selected high temperature. It was found that for samples with particles of bigger size and anisotropic shape the CuSe composition was favored, whereas particles with smaller size and spherical shape possessed a Cu2-xSe phase, especially when no sulfur was present. Apart from elemental Se, Al2Se3 was used as an efficient selenium source for the first time for the acquisition of copper selenide nanostructures. The use of dodecanethiol in the presence of trioctylphosphine and elemental Se promoted the incorporation of sulfur in the materials crystal lattice, leading to Cu-Se-S compositions. A variety of techniques were used to characterize the formed nanomaterials such as XRD, TEM, HRTEM, STEM-EDX, AFM and UV-Vis-NIR. Promising results, especially for thin anisotropic nanoplates for use as electrocatalysts in nitrogen reduction reaction (NRR), were obtained.

13.
ACS Nano ; 15(10): 16709-16718, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34558286

RESUMO

Two-dimensional germanene has been recently explored for applications in sensing, catalysis, and energy storage. The potential of this van der Waals material lies in its optoelectronic and chemical properties. However, pure free-standing germanene cannot be found in nature, and the synthesis methods are hindering the potentially fascinating properties of germanene. Herein, we report a single-step synthesis of few-layer germanene by electrochemical exfoliation in a nonaqueous environment. As a result of simultaneous decalcification and intercalation of the electrolyte's active ions, we achieved low-level hydrogenation of germanene that occurs at the edges of the material. The obtained edge-hydrogenated germanene flakes have a lateral size of several micrometers and possess a cubic structure. We have pioneered the potential application of edge-hydrogenated germanene for vapor sensing and demonstrated its specific sensitivity to methanol and ethanol. Furthermore, we have shown a selective behavior of the germanene-based sensor that appears to increase the electrical resistance in the vapors where methanol prevails. We anticipate that these results can provide an approach for emerging layered materials with the potential utility in advanced gas sensing.

14.
ACS Appl Mater Interfaces ; 13(26): 30806-30817, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34161061

RESUMO

Optoelectronics and sensing devices are of enormous importance in our modern lives, which has propelled the scientific community to explore new two-dimensional (2D) nanomaterials to meet the requirements of future devices. Herein, we present the exfoliation of palladium thiophosphate (Pd3(PS4)2) by mechanical shear force exfoliation. The Pd3(PS4)2-based photoelectrochemical (PEC) device demonstrated self-powered broadband photodetection in the range of 385-940 nm with an unprecedented responsivity of 2 A W-1 and a specific detectivity of about 8.67 × 1011 cm Hz1/2 W-1 under the illumination of 420 nm LED light. The crucial parameters such as photoresponsivity, response, and recovery time of the device can be controlled by an externally applied voltage and the analyte concentration. Moreover, Pd3(PS4)2-based vapor-sensing devices exhibited frequency-dependent selective acetone sensing in the presence of other organic vapors with an ultrafast response and a recovery time of less than 1 s. Finally, the photocatalytic activity of Pd3(PS4)2 was revealed, which can be attributed to the presence of an appropriate band alignment with the catalytic activity of Pd. This novel material with the aforementioned fascinating phenomenon will pave the way toward practical future applications in optoelectronics and sensing.

15.
ACS Nano ; 15(2): 2374-2385, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33543621

RESUMO

The ever decreasing sources of fossil fuels have launched extensive research of alternative materials that might play a key role in their replacement. Therefore, the scientific community continuously investigates the possibilities of maximizing the working capacity of such materials in order to fulfill energy challenges in the near future. In this context, doping of the semiconducting materials is a versatile strategy to trigger their physicochemical properties as well their electrochemical performance. Herein, the impact of rhenium doping toward photoelectrochemical activity of MoSe2 and WSe2 was studied. Our results indicate that rhenium as a dopant contributes to better overall electrochemical performance, that is, an easier electron transfer of these materials compared to pristine compounds. Additionally, the photoelectrochemical measurements revealed that the doping with rhenium generated an enhancement of the photocurrent response of MoSe2 as well as WSe2 under UV light illumination.

16.
Nanoscale ; 13(3): 1893-1903, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33439180

RESUMO

The interest of the scientific community for 2D graphene analogues has been recently focused on 2D-Xene materials from Group 14. Among them, germanene and its derivatives have shown great potential because of their large bandgap and easily tuneable electronic and optical properties. With the latter having been already explored, the use of chemically modified germanenes for optical bio-recognition is yet to be investigated. Herein, we have synthesized two germanene materials with different surface ligands namely hydrogenated germanene (Ge-H) and methylated germanene (Ge-Me) and used them as an optical platform for the label-free biorecognition of Ochratoxin A (OTA), a highly carcinogenic food contaminant. It was discovered that firstly the surface ligands on chemically modified germanenes have strong influence on the intrinsic fluorescence of the material; secondly they also highly affect both the bio-conjugation ability and the bio-recognition efficiency of the material towards the detection of the analyte. An improved calibration sensitivity, together with superior reproducibility and linearity of response, was obtained with a methylated germanene (Ge-Me) material, indicating also the better suitability of the latter for real sample analysis. Such research is highly beneficial for the development and optimization of 2D material based optical platforms for fast and cost-effective bioassays.

17.
ACS Appl Mater Interfaces ; 12(18): 20383-20392, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323527

RESUMO

Two-dimensional transition-metal dichalcogenides (TMDs) are lately in the scope within the scientific community owing to their exploitation as affordable catalysts for next-generation energy devices. Undoubtedly, only precise tailoring and control over the catalytic properties can ensure high efficiency and successful implementation of such devices in day-to-day practical utilization. However, contrary to theoretical predictions, systematic experimental work dealing with the doped materials and their impact to electrocatalysis are relatively underrated despite the considerable effect that it could bring into this field. Herein, we investigate the effect of four different dopants (i.e., Ti, V, Mn, and Fe) incorporated to both layered MoS2 and WS2 as solid-state solution toward their electrocatalytic performance through their evaluation as catalysts for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Our results pointed out that doping by Mn and Fe can enhance the electrocatalytic performance toward ORR, whereas doping by Ti and V revealed poor electrocatalytic effects (inhibition) compared to both undoped MoS2 and WS2. Surprisingly, none of the dopants contributed to the improvement of either MoS2 or WS2 toward HER activity. Therefore, in addition to the experimental data, density functional theory calculations were performed to further investigate the role of the dopants in the performance of MoS2 toward HER. According to these calculations, all dopants preferably occupied the edges of the crystal structure and thus could affect the electrocatalytic properties of the initial material. However, the observed ΔG values for hydrogen adsorption revealed that MoS2 is the best catalyst with a subsequent trend for doped materials following the less negative binding energies V < Ti < Mn < Fe, which was in good agreement with experimentally obtained overpotentials of the respective samples. This study thus elucidates the reasons for negative effects of doping in TMDs. This study brings an insight that not all dopants are beneficial and not all reactions are affected in the same way by dopants in TMDs.

18.
Inorg Chem ; 59(16): 11259-11265, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32142269

RESUMO

Arsenene, as an exotic representative of two-dimensional (2D) materials, has received great interest, yet the interest is mainly based on theoretical study. The reason for this is a restricted ability to operate the material from its synthesis to implementation. Beginning with the production, electrochemical exfoliation has been found as an extremely effective method for the preparation of 2D materials from bulk materials. Here, for the first time, we demonstrate the electrochemical exfoliation of bulk black arsenic in the anhydrous electrolyte medium. Spectro- and microscopic analyses evidence micrometer lateral size few-layer arsenene in a netlike porous shape formed of 2D flakes. We demonstrate that the surfactant-free exfoliation successfully resulted in a stable dispersion for which only washing with the corresponding solvent was sufficient. This electrochemistry route for the black arsenic exfoliation toward few-layer arsenene will broaden the materials' scope applications in new-generation devices.

19.
Anal Chem ; 92(3): 2452-2459, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31976642

RESUMO

Transition metal carbides, known as MXenes, are generated via the selective etching of "A" layers from their layered, ternary parent compounds, MAX phases, where M corresponds to early d-transition metal, A being a main group sp-element from either Group 13 or 14 and carbon or nitrogen being denoted by X. MXenes are being recognized as a new and uprising class of 2D materials with extraordinary physical and electrochemical properties. The huge specific surface area and outstanding electrical conductivity of MXenes, make them ideal candidates for sensing and energy applications. Herein, we demonstrated the successful incorporation of pristine MXene, Ti3C2 produced via HF etching and subsequent delamination with TBAOH, as a transducer platform toward the development of a second generation electrochemical glucose biosensor. Chronoamperometric studies demonstrate that the proposed biosensing system exhibits high selectivity and excellent electrocatalytic activity toward the detection of glucose, spanning over wide linear ranges of 50-27 750 µM and possess a low limit of detection of 23.0 µM. The findings reported in this study conceptually proves the probable applications of pristine MXenes toward the field of biosensors and pave ways for the future developments of highly selective and sensitive electrochemical biosensors for biomedical and food sampling applications.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Glucose/análise , Titânio/química
20.
Nanoscale ; 12(4): 2638-2647, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31939986

RESUMO

Black phosphorus (BP) in its monolayer form called phosphorene is thought of as a successor of graphene and is of great interest for (opto)electronic applications. A quantitative and scalable method for the synthesis of (mono-)few-layer phosphorene has been an outstanding challenge due to the process irreproducibility and environmental degradation capability of the BP. Here, we report a facile controlled electrochemical exfoliation method for the preparation of a few-layer phosphorene (FP) with nearly 100% yield. Our approach relies on the low-potential influence in anhydrous and oxygen-free low-boiling acetonitrile (AN) and N,N-dimethylformamide (DMF) using alkylammonium ions. Herein, intercalation of positive ions into BP interlayers occurred with a minimum potential of -2.95 V in DMF and -2.85 V in AN and the non-damaging and highly accurate electrochemical exfoliation lasted at -3.8 V. A variety of analytical methods have revealed that in particular DMF-based exfoliation results in high-quality phosphorene of 1-5 layers with good crystallinity and lateral sizes up to tens of micrometers. Moreover, assurance of the oxygen- and water-free environment allowed us to minimize the surface oxidation of BP and, consequently, exfoliated phosphorene. We pioneer an effective and reproducible printing transfer of electrochemically exfoliated phosphorene films onto various flexible and rigid substrates. The surfactant-free process of exfoliation allowed assembly and transfer of thin films based on FP. The phosphorene-based films characterized as direct gap semiconductors have a layer-number-dependent bandgap with a tuning range larger than that of other 2D materials. We show that on varying the films' thickness, it is possible to modify their optical properties, which is a significant advantage for compact and switchable optoelectronic components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...