Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(8): 198, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418047

RESUMO

Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.


Assuntos
Eucariotos , Células Eucarióticas , Animais , Humanos , Plantas , Fungos , Transdução de Sinais , Mamíferos
2.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37154843

RESUMO

Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and built from ∼30 different nucleoporins (Nups) in multiple copies, few are integral membrane proteins. One of these transmembrane nucleoporins, Ndc1, is thought to function in NPC assembly at the fused inner and outer nuclear membranes. Here, we show a direct interaction of Ndc1's transmembrane domain with Nup120 and Nup133, members of the pore membrane coating Y-complex. We identify an amphipathic helix in Ndc1's C-terminal domain binding highly curved liposomes. Upon overexpression, this amphipathic motif is toxic and dramatically alters the intracellular membrane organization in yeast. Ndc1's amphipathic motif functionally interacts with related motifs in the C-terminus of the nucleoporins Nup53 and Nup59, important for pore membrane binding and interconnecting NPC modules. The essential function of Ndc1 can be suppressed by deleting the amphipathic helix from Nup53. Our data indicate that nuclear membrane and presumably NPC biogenesis depends on a balanced ratio between amphipathic motifs in diverse nucleoporins.


Assuntos
Membrana Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Saccharomyces cerevisiae , Membrana Celular/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
3.
Genet Med ; 25(7): 100836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37013901

RESUMO

PURPOSE: Rothmund-Thomson syndrome (RTS) is characterized by poikiloderma, sparse hair, small stature, skeletal defects, cancer, and cataracts, resembling features of premature aging. RECQL4 and ANAPC1 are the 2 known disease genes associated with RTS in >70% of cases. We describe RTS-like features in 5 individuals with biallelic variants in CRIPT (OMIM 615789). METHODS: Two newly identified and 4 published individuals with CRIPT variants were systematically compared with those with RTS using clinical data, computational analysis of photographs, histologic analysis of skin, and cellular studies on fibroblasts. RESULTS: All CRIPT individuals fulfilled the diagnostic criteria for RTS and additionally had neurodevelopmental delay and seizures. Using computational gestalt analysis, CRIPT individuals showed greatest facial similarity with individuals with RTS. Skin biopsies revealed a high expression of senescence markers (p53/p16/p21) and the senescence-associated ß-galactosidase activity was elevated in CRIPT-deficient fibroblasts. RECQL4- and CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors and no or only mild sensitivity to genotoxic stress by ionizing radiation, mitomycin C, hydroxyurea, etoposide, and potassium bromate. CONCLUSION: CRIPT causes an RTS-like syndrome associated with neurodevelopmental delay and epilepsy. At the cellular level, RECQL4- and CRIPT-deficient cells display increased senescence, suggesting shared molecular mechanisms leading to the clinical phenotypes.


Assuntos
Síndrome de Rothmund-Thomson , Humanos , Síndrome de Rothmund-Thomson/genética , Síndrome de Rothmund-Thomson/diagnóstico , Síndrome de Rothmund-Thomson/patologia , Senescência Celular/genética , Dano ao DNA , Hidroxiureia/metabolismo , Fibroblastos , Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Semin Cancer Biol ; 88: 1-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436712

RESUMO

The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Mitose/genética , Núcleo Celular , Cromossomos , Biologia
5.
Cells ; 11(24)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552884

RESUMO

The nuclear envelope constitutes a selective barrier that segregates chromatin into the nucleus of eukaryotic cells [...].


Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Células Eucarióticas , Lipídeos
7.
Elife ; 112022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36000978

RESUMO

The nuclear pore complex (NPC) is the central portal for macromolecular exchange between the nucleus and cytoplasm. In all eukaryotes, NPCs assemble into an intact nuclear envelope (NE) during interphase, but the process of NPC biogenesis remains poorly characterized. Furthermore, little is known about how NPC assembly leads to the fusion of the outer and inner NE, and no factors have been identified that could trigger this event. Here, we characterize the transmembrane protein Brl1 as an NPC assembly factor required for NE fusion in budding yeast. Brl1 preferentially associates with NPC assembly intermediates and its depletion halts NPC biogenesis, leading to NE herniations that contain inner and outer ring nucleoporins but lack the cytoplasmic export platform. Furthermore, we identify an essential amphipathic helix in the luminal domain of Brl1 that mediates interactions with lipid bilayers. Mutations in this amphipathic helix lead to NPC assembly defects, and cryo-electron tomography analyses reveal multilayered herniations of the inner nuclear membrane with NPC-like structures at the neck, indicating a failure in NE fusion. Taken together, our results identify a role for Brl1 in NPC assembly and suggest a function of its amphipathic helix in mediating the fusion of the inner and outer nuclear membranes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Cell Cycle ; 21(17): 1785-1794, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35549614

RESUMO

Nup50 is nuclear pore complex component localized to the nuclear side of the pore and in the nucleoplasm. It has been characterized as an auxiliary factor in nuclear transport reactions. Our recent work indicates that it interacts with and stimulates RCC1, the sole guanine nucleotide exchange factor for the GTPase Ran. Here, we discuss how this interaction might contribute to Nup50 function in nuclear transport but also its other functions like control of gene expression, cell cycle and DNA damage repair.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
9.
Methods Mol Biol ; 2502: 51-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412230

RESUMO

Xenopus egg extract is a powerful tool for the in vitro investigation of complex cellular mechanisms. Here we describe how to obtain and employ interphase Xenopus egg extract to study nuclear pore complex assembly and how to analyze the process using Western blot or immunofluorescence based assays. The function of proteins can be conveniently assayed by high-efficient antibody mediated depletion.


Assuntos
Membrana Nuclear , Poro Nuclear , Animais , Imunofluorescência , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Óvulo , Xenopus laevis
10.
Cells ; 10(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944108

RESUMO

Nuclear pore complexes (NPCs) mediate the selective and highly efficient transport between the cytoplasm and the nucleus. They are embedded in the two membrane structure of the nuclear envelope at sites where these two membranes are fused to pores. A few transmembrane proteins are an integral part of NPCs and thought to anchor these complexes in the nuclear envelope. In addition, a number of nucleoporins without membrane spanning domains interact with the pore membrane. Here we review our current knowledge of how these proteins interact with the membrane and how this interaction can contribute to NPC assembly, stability and function as well as shaping of the pore membrane.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/química , Ligação Proteica
11.
EMBO J ; 40(23): e108788, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725842

RESUMO

During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/ß, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N-terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild-type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mitose , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Xenopus laevis
12.
Trends Cell Biol ; 31(12): 1019-1033, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34294532

RESUMO

Nuclear pore complexes (NPCs) are huge protein assemblies within the nuclear envelope (NE) that serve as selective gates for macromolecular transport between nucleus and cytoplasm. When higher eukaryotic cells prepare for division, they rapidly disintegrate NPCs during NE breakdown such that nuclear and cytoplasmic components mix to enable the formation of a cytoplasmic mitotic spindle. At the end of mitosis, reassembly of NPCs is coordinated with the establishment of the NE around decondensing chromatin. We review recent progress on mitotic NPC disassembly and reassembly, focusing on vertebrate cells. We highlight novel mechanistic insights into how NPCs are rapidly disintegrated into conveniently reusable building blocks, and put divergent models of (post-)mitotic NPC assembly into a spatial and temporal context.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Núcleo Celular/metabolismo , Humanos , Mitose , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
13.
EMBO J ; 39(20): e106510, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32914447

RESUMO

FXR proteins are part of ribonucleoprotein granules controlling stability, translation, and cellular localization of target mRNAs. In the current issue, Agote-Aran et al extend the repertoire of FXR protein action and show that they are also involved in the transport of nuclear pore complex components to the nuclear envelope and thereby prevent cytoplasmic aggregation of these proteins.


Assuntos
Membrana Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares , Homeostase , Poro Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/genética
14.
Cells ; 9(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708675

RESUMO

The eukaryotic nucleus remodels extensively during mitosis. Upon mitotic entry, the nuclear envelope breaks down and chromosomes condense into rod-shaped bodies, which are captured by the spindle apparatus and segregated during anaphase. Through telophase, chromosomes decondense and the nuclear envelope reassembles, leading to a functional interphase nucleus. While the molecular processes occurring in early mitosis are intensively investigated, our knowledge about molecular mechanisms of nuclear reassembly is rather limited. Using cell free and cellular assays, we identify the histone variant H2A.Z and its chaperone VPS72/YL1 as important factors for reassembly of a functional nucleus after mitosis. Live-cell imaging shows that siRNA-mediated downregulation of VPS72 extends the telophase in HeLa cells. In vitro, depletion of VPS72 or H2A.Z results in malformed and nonfunctional nuclei. VPS72 is part of two chromatin-remodeling complexes, SRCAP and EP400. Dissecting the mechanism of nuclear reformation using cell-free assays, we, however, show that VPS72 functions outside of the SRCAP and EP400 remodeling complexes to deposit H2A.Z, which in turn is crucial for formation of a functional nucleus.


Assuntos
Núcleo Celular/metabolismo , Histonas/metabolismo , Mitose , Proteínas Repressoras/metabolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequência Conservada , Regulação para Baixo , Células HeLa , Humanos , Domínios Proteicos , Proteínas Repressoras/química , Telófase , Xenopus
15.
PLoS Genet ; 15(5): e1008109, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31120884
16.
17.
Cerebellum ; 18(3): 422-432, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30741391

RESUMO

Nuclear pore complexes (NPCs) are the gateways of the nuclear envelope mediating transport between cytoplasm and nucleus. They form huge complexes of 125 MDa in vertebrates and consist of about 30 different nucleoporins present in multiple copies in each complex. Here, we describe pathogenic variants in the nucleoporin 93 (NUP93) associated with an autosomal recessive form of congenital ataxia. Two rare compound heterozygous variants of NUP93 were identified by whole exome sequencing in two brothers with isolated cerebellar atrophy: one missense variant (p.R537W) results in a protein which does not localize to NPCs and cannot functionally replace the wild type protein, whereas the variant (p.F699L) apparently supports NPC assembly. In addition to its recently described pathological role in steroid-resistant nephrotic syndrome, our work identifies NUP93 as a candidate gene for non-progressive congenital ataxia.


Assuntos
Ataxia Cerebelar/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Irmãos , Adulto Jovem
18.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718377

RESUMO

RecQ-like helicase 4 (RECQL4) is mutated in patients suffering from the Rothmund-Thomson syndrome, a genetic disease characterized by premature aging, skeletal malformations, and high cancer susceptibility. Known roles of RECQL4 in DNA replication and repair provide a possible explanation of chromosome instability observed in patient cells. Here, we demonstrate that RECQL4 is a microtubule-associated protein (MAP) localizing to the mitotic spindle. RECQL4 depletion in M-phase-arrested frog egg extracts does not affect spindle assembly per se, but interferes with maintaining chromosome alignment at the metaphase plate. Low doses of nocodazole depolymerize RECQL4-depleted spindles more easily, suggesting abnormal microtubule-kinetochore interaction. Surprisingly, inter-kinetochore distance of sister chromatids is larger in depleted extracts and patient fibroblasts. Consistent with a role to maintain stable chromosome alignment, RECQL4 down-regulation in HeLa cells causes chromosome misalignment and delays mitotic progression. Importantly, these chromosome alignment defects are independent from RECQL4's reported roles in DNA replication and damage repair. Our data elucidate a novel function of RECQL4 in mitosis, and defects in mitotic chromosome alignment might be a contributing factor for the Rothmund-Thomson syndrome.


Assuntos
Metáfase/genética , Proteínas Associadas aos Microtúbulos/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/enzimologia , Animais , Cromatina/metabolismo , Instabilidade Cromossômica/genética , Segregação de Cromossomos/genética , Códon sem Sentido/genética , Reparo do DNA , Replicação do DNA , Mutação da Fase de Leitura/genética , Células HEK293 , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Óvulo/enzimologia , Fuso Acromático/enzimologia , Xenopus/genética
19.
J Clin Invest ; 128(10): 4313-4328, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179222

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.


Assuntos
Síndrome Nefrótica/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Xenopus/genética , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
Curr Biol ; 28(11): R674-R677, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29870710

RESUMO

Nuclear pore complexes are the transport gates to the nucleus. Most proteins forming these huge complexes are evolutionarily conserved, as is the eightfold symmetry of these complexes. A new study reporting the structure of the yeast nuclear pore complex now shows striking differences from its human counterpart.


Assuntos
Poro Nuclear , Proteínas de Saccharomyces cerevisiae , Conservação dos Recursos Naturais , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...