Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1201630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325481

RESUMO

Opportunistic infections from multidrug-resistant pathogens such as Burkholderia cenocepacia are a threatening risk for hospital-bound patients suffering from immunocompromised conditions or cystic fibrosis. B. cenocepacia BC2L-C lectin has been linked to bacterial adhesion and biofilm formation, thus hindering its activity is seen as a promising strategy to reduce the severity of the infection. We recently described the first bifunctional ligands of the trimeric N-terminal domain of BC2L-C (BC2L-C-Nt), capable of simultaneously engaging its fucose-specific sugar binding site and a vicinal region at the interface between two monomers. Here, we report a computational workflow for the study of these glycomimetic bifunctional ligands in complex with BC2L-C-Nt, aimed at investigating the molecular basis of ligand binding and the dynamics of glycomimetic/lectin interactions. In particular, we evaluated the use of molecular docking in the protein trimer, followed by refinement using MM-GBSA re-scoring and MD simulations in explicit water. Computational results were compared to experimental data derived from X-ray crystallography and isothermal titration calorimetry. The computational protocol proved suitable to provide a reliable description of the interactions between the ligands and BC2L-C-Nt, highlighting the contribution of MD simulations in explicit solvent for a good fit with the experimental observations. The information achieved in the study and the whole workflow appear promising for the structure-based design of improved BC2L-C-Nt ligands as novel antimicrobials with antiadhesive properties.

2.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771163

RESUMO

The inhibition of carbohydrate-lectin interactions is being explored as an efficient approach to anti adhesion therapy and biofilm destabilization, two alternative antimicrobial strategies that are being explored against resistant pathogens. BC2L-C is a new type of lectin from Burkholderia cenocepacia that binds (mammalian) fucosides at the N-terminal domain and (bacterial) mannosides at the C-terminal domain. This double carbohydrate specificity allows the lectin to crosslink host cells and bacterial cells. We have recently reported the design and generation of the first glycomimetic antagonists of BC2L-C, ß-C- or ß-N-fucosides that target the fucose-specific N-terminal domain (BC2L-C-Nt). The low water solubility of the designed N-fucosides prevented a full examination of this promising series of ligands. In this work, we describe the synthesis and biophysical evaluation of new L-fucosyl and L-galactosyl amides, designed to be water soluble and to interact with BC2L-C-Nt. The protein-ligand interaction was investigated by Saturation Transfer Difference NMR, Isothermal Titration Calorimetry and crystallographic studies. STD-NMR experiments showed that both fucosyl and galactosyl amides compete with α-methyl fucoside for lectin binding. A new hit compound was identified with good water solubility and an affinity for BC2L-C-Nt of 159 µM (ITC), which represents a one order of magnitude gain over α-methyl fucoside. The x-ray structure of its complex with BC2L-C-Nt was solved at 1.55 Å resolution.


Assuntos
Burkholderia cenocepacia , Lectinas , Animais , Lectinas/química , Burkholderia cenocepacia/química , Ligantes , Amidas/metabolismo , Fucose/química , Mamíferos/metabolismo
3.
Nutrients ; 12(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861862

RESUMO

Abdominal pain is a frequent symptom of irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBDs). Although the knowledge of these pathologies is progressing, new therapeutic strategies continue to be investigated. In the present study, the effect of a system of molecules of natural origin (a medical device according to EU Directive 93/42/EC, engineered starting from Boswellia serrata resins, Aloe vera polysaccharides and Matricaria chamomilla and Melissa officinalis polyphenols) was evaluated against the intestinal damage and visceral pain development in DNBS-induced colitis model in rats. The system (250 and 500 mg kg-1) was orally administered once daily, starting three days before the injection of 2,4-dinitrobenzenesulfonic acid (DNBS) and for 14 days thereafter. The viscero-motor response (VMR) to colon-rectal balloon distension (CRD) was used as measure of visceral sensitivity. The product significantly reduced the VMR of DNBS-treated animals. Its effect on pain threshold was better than dexamethasone and mesalazine, and not lower than amitriptyline and otilonium bromide. At microscopic and macroscopic level, the tested system was more effective in protecting the intestinal mucosa than dexamethasone and mesalazine, promoting the healing of tissue lesions. Therefore, we suggest that the described system of molecules of natural origin may represent a therapeutic option to manage painful bowel diseases.


Assuntos
Dor Abdominal/tratamento farmacológico , Preparações de Plantas , Resinas Vegetais , Dor Visceral/tratamento farmacológico , Aloe/química , Animais , Camomila/química , Colite/tratamento farmacológico , Modelos Animais de Doenças , Flavonoides , Masculino , Ratos , Ratos Sprague-Dawley
4.
J Vasc Res ; 53(5-6): 255-268, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27923233

RESUMO

Lymphatic leakage can be seen as a detrimental phenomenon associated with fluid retention and deposition as well as gain of weight. Moreover, lymphatic dysfunction is associated with an inflammatory environment and can be a substrate for other health conditions. A number of treatments can ameliorate lymphatic vasculature: natural substances have been used as treatment options particularly suitable for their consolidated effectiveness and safety profile. Here we report the protective effect of AdipoDren®, an association of a series of plant-derived natural complexes, on lymphatic endothelium permeability promoted by interleukin-1 beta (IL-1ß) and the associated molecular mechanisms. AdipoDren® demonstrated a protective effect on dermal lymphatic endothelial cell permeability increased by IL-1ß. Reduced permeability was due to the maintenance of tight junctions and cell-cell localisation of occludin and zonula occludens-1 (ZO-1). Moreover, AdipoDren® reduced the expression of the inflammatory key element cyclooxygenase-2 (COX-2), while not altering the levels of endothelial and inducible nitric oxide synthases (eNOS and iNOS). The upregulation of antioxidant enzymatic systems (catalase and superoxide dismutase-1, SOD-1) and the downregulation of pro-oxidant markers (p22 phox subunit of NADPH oxidase) were also evident. In conclusion, AdipoDren® would be useful to ameliorate conditions of altered lymphatic vasculature and to support the physiological functionality of the lymphatic endothelium.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Linfático/efeitos dos fármacos , Interleucina-1beta/farmacologia , Linfedema/tratamento farmacológico , Extratos Vegetais/farmacologia , Preparações de Plantas/farmacologia , Junções Íntimas/efeitos dos fármacos , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Endotélio Linfático/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Linfedema/metabolismo , Linfedema/fisiopatologia , NADPH Oxidases/metabolismo , Ocludina/metabolismo , Rutina/farmacologia , Superóxido Dismutase-1/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...