Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 1: 100026, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31517291

RESUMO

In this study, a method is described to determine the monolayer loading capacity (MLC) of the drugs naproxen and ibuprofen, both having high recrystallization tendencies, in mesoporous silica (MS), a well known carrier that is able to stabilize the amorphous form of a drug. The stabilization has been suggested to be due to direct absorption of the drug molecules onto the MS surface, i.e. the drug monolayer. In addition, drug that is not in direct contact with MS surface can fill the pores up to its pore filling capacity (PFC) and is potentially stabilized by confinement due to the pore size being smaller than a crystal nuclei. For drugs with high recrystallization tendencies, any drug outside the pores crystallizes due to its poor physical stability. The drug monolayer does not contribute to the glass transition temperature (Tg ) in the DSC, however, the confined amorphous drug above MLC has a Tg and the heat capacity (ΔC p) over the Tg increases with an increasing fraction of confined amorphous drug. Hence, several drug loading values above the MLC were investigated towards the presence of a Tg and ΔC p using differential scanning calorimetry (DSC). A linear correlation between the amount of confined amorphous drug and its ΔC p was identified for the mixtures between the MLC and PFC. By subsequent extrapolation to zero ΔC p the experimental MLC could be determined. Using theoretical density functional theory (DFT) and ab initio Molecular Dynamics (AIMD), the binding energies for the monolayer suggested that the monolayer in fact is thermodynamically more favorable than the crystalline form, whereas the confined amorphous form is thermodynamically less favorable. Consequently, a physical stability study showed that the confined amorphous drugs above the MLC were thermodynamically unstable and consequently flowing out of the pores in order to crystallize, whereas the monolayer remained physically stable.

2.
J Control Release ; 303: 12-23, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30980853

RESUMO

Mucoadhesive drug formulations have been studied and used as alternatives to conventional formulations in order to achieve prolonged retention at the intended site. In addition to providing a controlled drug release, several drugs and disease conditions might benefit from mucoadhesive formulations, contributing to better therapeutic outcomes. Here, we describe the development and the in vitro/in vivo characterization of a mucoadhesive in situ gellifying formulation using PF127, a thermo reversible polymer, entrapping budesonide (BUD), a potent corticosteroid used for the treatment of a wide range of inflammatory diseases, including those affecting mucosas, such as in the GI tract. PF127 formulations (15-17%) were successfully prepared by a cold method as a thermo reversible in situ gelling dispersion for mucosal drug delivery, as confirmed by DSC. Sol-gel temperatures of PF127 formulations (25-39 °C) were observed by dynamic gelation and determined by microrheology and oscillatory rheometry. X-ray diffractograms and TEM images showed that BUD was completely solubilized within the polymeric micelles. In vitro, the gels showed 5-14 g force of mucoadhesion, and the ex vivo studies confirmed that the formulation efficiently adhered to the mucosa. Histopathological analysis combined with fluorescence images and ex vivo intestinal permeation confirmed that the formulation remained on the TGI mucosa for at least 4 h after administration. In vivo studies conducted in a murine model of intestinal mucositis demonstrated that the 16% PF127 BUD formulation was able to resolve the inflammatory injury in the intestinal mucosa. Results demonstrate that fine-tuning of PF127 formulations along with adequate selection of the drug agent, thorough characterization of the dispersions and their interactions with biological interfaces leads to the development of effective controlled drug delivery systems targeted to GI inflammatory diseases.


Assuntos
Anti-Inflamatórios/administração & dosagem , Budesonida/administração & dosagem , Mucosite/tratamento farmacológico , Poloxâmero/administração & dosagem , Adesividade , Animais , Preparações de Ação Retardada/administração & dosagem , Duodeno/efeitos dos fármacos , Duodeno/patologia , Mucosa Esofágica/química , Temperatura Alta , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Ratos Wistar , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...