Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin Chem ; 68(1): 99-114, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34969105

RESUMO

BACKGROUND: Although it has been 30 years since the first automation systems were introduced in the microbiology laboratory, total laboratory automation (TLA) has only recently been recognized as a valuable component of the laboratory. A growing number of publications illustrate the potential impact of automation. TLA can improve standardization, increase laboratory efficiency, increase workplace safety, and reduce long-term costs. CONTENT: This review provides a preview of the current state of automation in clinical microbiology and covers the main developments during the last years. We describe the available hardware systems (that range from single function devices to multifunction workstations) and the challenging alterations on workflow and organization of the laboratory that have to be implemented to optimize automation. SUMMARY: Despite the many advantages in efficiency, productivity, and timeliness that automation offers, it is not without new and unique challenges. For every advantage that laboratory automation provides, there are similar challenges that a laboratory must face. Change management strategies should be used to lead to a successful implementation. TLA represents, moreover, a substantial initial investment. Nevertheless, if properly approached, there are a number of important benefits that can be achieved through implementation of automation in the clinical microbiology laboratory. Future developments in the field of automation will likely focus on image analysis and artificial intelligence improvements. Patient care, however, should remain the epicenter of all future directions and there will always be a need for clinical microbiology expertise to interpret the complex clinical and laboratory information.


Assuntos
Automação Laboratorial , Serviços de Laboratório Clínico , Inteligência Artificial , Automação , Humanos , Laboratórios , Fluxo de Trabalho
2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255105

RESUMO

ObjectivesSaliva sampling could serve as an alternative non-invasive sample for SARS-CoV-2 diagnosis while rapid antigen testing (RAT) might help to mitigate the shortage of reagents sporadically encountered with RT-PCR. Thus, in the RESTART study we compared antigen and RT-PCR testing methods on nasopharyngeal (NP) swabs and salivary samples. MethodsWe conducted a prospective observational study among COVID-19 hospitalized patients between 10th December 2020 and 1st February 2021. Paired saliva and NP samples were investigated by RT-PCR (Cobas 6800, Roche-Switzerland) and by two rapid antigen tests: One Step Immunoassay Exdia(R) COVID-19 Ag (Precision Biosensor, Korea) and Standard Q(R) COVID-19 Rapid Antigen Test (Roche-Switzerland). ResultsA total of 58 paired NP-saliva specimens were collected. Thirty-two of 58 (55%) patients were hospitalized in the intensive care unit and the median duration of symptoms was 11 days (IQR 5-19). NP and salivary RT-PCR exhibited sensitivity of 98% and 69% respectively whereas the specificity of these RT-PCRs assays were of 100%. NP RAT exhibited much lower diagnostic performances with sensitivities of 35% and 41% for the Standard Q(R) and Exdia(R) assays respectively, when a wet-swab approach was used (i.e. when the swab was diluted in the viral transport medium (VTM) before testing). The sensitivity of the dry-swab approach was slightly better (47%). These antigen tests exhibited very low sensitivity (4 and 8%) when applied to salivary swabs. ConclusionsNasopharyngeal RT-PCR is the most accurate test for COVID-19 diagnosis in hospitalized patients. RT-PCR on salivary samples may be used when nasopharyngeal swabs are contraindicated. RAT are not appropriate for hospitalized patients.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250915

RESUMO

BackgroundWhile facing a second wave in SARS-CoV-2 pandemic, in November 2020 the Swiss Federal Office of Public Health (FOPH) authorized the use of rapid antigen tests (RATs) in addition to the gold-standard reverse transcription-polymerase chain reaction (RT-PCR). MethodsWe implemented the use of RAT in the emergency ward of our university hospital for rapid patients triaging and compared performances of four different antigen tests. All results were compared to SARS-CoV-2 specific RT-PCR (reference standard). ResultsTriaging patients using RAT in association with RT-PCR allowed us to isolate promptly positive patients and to save resources, in a context of rapid RT-PCR reagents shortage. Among 532 patients with valid results, overall sensitivities were 48.3% for One Step Exdia and 41.2% for Standard Q(R), Panbio-and BD Veritor. All four antigen tests exhibited specificity above 99%. Sensitivity increased up to 74.6%, 66.2%, 66.2% and 64.8% for One Step Exdia, Standard Q, Panbio, and BD Veritor respectively, when considering viral loads above 105copies/ml, up to 100%, 97.8%, 96.6% and 95.6% for viral loads above 106 copies/ml and 100% (for all tests) when considering viral loads above 107 copies/ml. Sensitivity was significantly higher for patients presenting with symptoms onset within 4 days (74.3%, 69.2%, 69.2% and 64%, respectively) versus patients with evolution of symptoms for more than 4 days (36.8%, 21.1%, 21.1% and 23.7%, respectively). Sensitivities of all RAT assays were of only 33% among hospitalized patients without COVID-19 symptoms. ConclusionRAT might represent a useful epidemiological resource in selected clinical settings as a complementary tool to the molecular tests for rapid patients triaging, but the lower sensitivity compared to RT-PCR, especially in late presenters and subjects without COVID-19 symptoms, must be taken into account in order to correctly use RAT for triaging.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20097741

RESUMO

BackgroundCoronavirus disease 2019 (COVID-19) is now a global pandemic with Europe and the USA at its epicenter. Little is known about risk factors for progression to severe disease in Europe. This study aims to describe the epidemiology of COVID-19 patients in a Swiss university hospital. MethodsThis retrospective observational study included all adult patients hospitalized with a laboratory confirmed SARS-CoV-2 infection from March 1 to March 25, 2020. We extracted data from electronic health records. The primary outcome was the need to mechanical ventilation at day 14. We used multivariate logistic regression to identify risk factors for mechanical ventilation. Follow-up was of at least 14 days. Results200 patients were included, of whom 37 (18{middle dot}5%) needed mechanical ventilation at 14 days. The median time from symptoms onset to mechanical ventilation was 9{middle dot}5 days (IQR 7.00, 12.75). Multivariable regression showed increased odds of mechanical ventilation in males (3.26, 1.21-9.8; p=0.025), in patients who presented with a qSOFA score [≥]2 (6.02, 2.09-18.82; p=0.001), with bilateral infiltrate (5.75, 1.91-21.06; p=0.004) or with a CRP of 40 mg/l or greater (4.73, 1.51-18.58; p=0.013). ConclusionsThis study gives some insight in the epidemiology and clinical course of patients admitted in a European tertiary hospital with SARS-CoV-2 infection. Male sex, high qSOFA score, CRP of 40 mg/l or greater and a bilateral radiological infiltrate could help clinicians identify patients at high risk for mechanical ventilation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...