Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7354, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963867

RESUMO

Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.


Assuntos
Basidiomycota , Resistência à Doença , Mapeamento Cromossômico , Resistência à Doença/genética , Alelos , Haplótipos , Sequência de Aminoácidos , Basidiomycota/genética , Doenças das Plantas/genética
2.
Elife ; 122023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466633

RESUMO

Quantitative gene regulation at the cell population level can be achieved by two fundamentally different modes of regulation at individual gene copies. A 'digital' mode involves binary ON/OFF expression states, with population-level variation arising from the proportion of gene copies in each state, while an 'analog' mode involves graded expression levels at each gene copy. At the Arabidopsis floral repressor FLOWERING LOCUS C (FLC), 'digital' Polycomb silencing is known to facilitate quantitative epigenetic memory in response to cold. However, whether FLC regulation before cold involves analog or digital modes is unknown. Using quantitative fluorescent imaging of FLC mRNA and protein, together with mathematical modeling, we find that FLC expression before cold is regulated by both analog and digital modes. We observe a temporal separation between the two modes, with analog preceding digital. The analog mode can maintain intermediate expression levels at individual FLC gene copies, before subsequent digital silencing, consistent with the copies switching OFF stochastically and heritably without cold. This switch leads to a slow reduction in FLC expression at the cell population level. These data present a new paradigm for gradual repression, elucidating how analog transcriptional and digital epigenetic memory pathways can be integrated.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Inativação Gênica , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Flores/fisiologia , Temperatura Baixa
3.
AoB Plants ; 15(4): plad032, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37415723

RESUMO

Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant's environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world.

4.
Nat Plants ; 9(3): 385-392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797350

RESUMO

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Assuntos
Magnaporthe , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Brasil , Bangladesh
5.
Genes Dev ; 35(11-12): 888-898, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33985972

RESUMO

Plants monitor many aspects of their fluctuating environments to help align their development with seasons. Molecular understanding of how noisy temperature cues are registered has emerged from dissection of vernalization in Arabidopsis, which involves a multiphase cold-dependent silencing of the floral repressor locus FLOWERING LOCUS C (FLC). Cold-induced transcriptional silencing precedes a low probability PRC2 epigenetic switching mechanism. The epigenetic switch requires the absence of warm temperatures as well as long-term cold exposure. However, the natural temperature inputs into the earlier transcriptional silencing phase are less well understood. Here, through investigation of Arabidopsis accessions in natural and climatically distinct field sites, we show that the first seasonal frost strongly induces expression of COOLAIR, the antisense transcripts at FLC Chamber experiments delivering a constant mean temperature with different fluctuations showed the freezing induction of COOLAIR correlates with stronger repression of FLC mRNA. Identification of a mutant that ectopically activates COOLAIR revealed how COOLAIR up-regulation can directly reduce FLC expression. Consistent with this, transgenes designed to knockout COOLAIR perturbed the early phase of FLC silencing. However, all transgenes designed to remove COOLAIR resulted in increased production of novel convergent FLC antisense transcripts. Our study reveals how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Estações do Ano
6.
Front Plant Sci ; 12: 628726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584778

RESUMO

Temperature intrinsically influences all aspects of biochemical and biophysical processes. Organisms have therefore evolved strategies to buffer themselves against thermal perturbations. Many organisms also use temperature signals as cues to align behavior and development with certain seasons. These developmentally important thermosensory mechanisms have generally been studied in constant temperature conditions. However, environmental temperature is an inherently noisy signal, and it has been unclear how organisms reliably extract specific temperature cues from fluctuating temperature profiles. In this context, we discuss plant thermosensory responses, focusing on temperature sensing throughout vernalization in Arabidopsis. We highlight many different timescales of sensing, which has led to the proposal of a distributed thermosensing paradigm. Within this paradigm, we suggest a classification system for thermosensors. Finally, we focus on the longest timescale, which is most important for sensing winter, and examine the different mechanisms in which memory of cold exposure can be achieved.

7.
Transcription ; 11(3-4): 134-159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33016207

RESUMO

Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression in response to stress or to drive developmental transitions. Among the many signals that plants perceive, light and temperature are of particular interest due to their intensely fluctuating nature which is combined with a long-term seasonal trend. Whereas specific receptors are key in the light-sensing mechanism, the identity of plant thermosensors for high and low temperatures remains far from fully addressed. This review aims at discussing common as well as divergent characteristics of gene expression regulation in plants, controlled by light and temperature. Light and temperature signaling control the abundance of specific transcription factors, as well as the dynamics of co-transcriptional processes such as RNA polymerase elongation rate and alternative splicing patterns. Additionally, sensing both types of cues modulates gene expression by altering the chromatin landscape and through the induction of long non-coding RNAs (lncRNAs). However, while light sensing is channeled through dedicated receptors, temperature can broadly affect chemical reactions inside plant cells. Thus, direct thermal modifications of the transcriptional machinery add another level of complexity to plant transcriptional regulation. Besides the rapid transcriptome changes that follow perception of environmental signals, plant developmental transitions and acquisition of stress tolerance depend on long-term maintenance of transcriptional states (active or silenced genes). Thus, the rapid transcriptional response to the signal (Phase I) can be distinguished from the long-term memory of the acquired transcriptional state (Phase II - remembering the signal). In this review we discuss recent advances in light and temperature signal perception, integration and memory in Arabidopsis thaliana, focusing on transcriptional regulation and highlighting the contrasting and unique features of each type of cue in the process.


Assuntos
Luz , Plantas/genética , Temperatura , Transcrição Gênica/genética , Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas/genética , Plantas/metabolismo
8.
Elife ; 92020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902380

RESUMO

In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Haplótipos/genética , Proteínas de Domínio MADS , Estações do Ano , Arabidopsis/fisiologia , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/análise , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação/genética , Suécia , Reino Unido
9.
Nature ; 585(7824): E8, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32839616

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nature ; 583(7818): 825-829, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669706

RESUMO

Temperature is a key factor in the growth and development of all organisms1,2. Plants have to interpret temperature fluctuations, over hourly to monthly timescales, to align their growth and development with the seasons. Much is known about how plants respond to acute thermal stresses3,4, but the mechanisms that integrate long-term temperature exposure remain unknown. The slow, winter-long upregulation of VERNALIZATION INSENSITIVE 3 (VIN3)5-7, a PHD protein that functions with Polycomb repressive complex 2 to epigenetically silence FLOWERING LOCUS C (FLC) during vernalization, is central to plants interpreting winter progression5,6,8-11. Here, by a forward genetic screen, we identify two dominant mutations of the transcription factor NTL8 that constitutively activate VIN3 expression and alter the slow VIN3 cold induction profile. In the wild type, the NTL8 protein accumulates slowly in the cold, and directly upregulates VIN3 transcription. Through combining computational simulation and experimental validation, we show that a major contributor to this slow accumulation is reduced NTL8 dilution due to slow growth at low temperatures. Temperature-dependent growth is thus exploited through protein dilution to provide the long-term thermosensory information for VIN3 upregulation. Indirect mechanisms involving temperature-dependent growth, in addition to direct thermosensing, may be widely relevant in long-term biological sensing of naturally fluctuating temperatures.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Temperatura Baixa , Sensação Térmica/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Domínio MADS/genética , Modelos Biológicos , Raízes de Plantas/metabolismo , Sensação Térmica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Genes Dev ; 34(5-6): 446-461, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001513

RESUMO

In Arabidopsis thaliana, the cold-induced epigenetic regulation of FLOWERING LOCUS C (FLC) involves distinct phases of Polycomb repressive complex 2 (PRC2) silencing. During cold, a PHD-PRC2 complex metastably and digitally nucleates H3K27me3 within FLC On return to warm, PHD-PRC2 spreads across the locus delivering H3K27me3 to maintain long-term silencing. Here, we studied natural variation in this process in Arabidopsis accessions, exploring Lov-1, which shows FLC reactivation on return to warm, a feature characteristic of FLC in perennial Brassicaceae This analysis identifies an additional phase in this Polycomb silencing mechanism downstream from H3K27me3 spreading. In this long-term silencing (perpetuated) phase, the PHD proteins are lost from the nucleation region and silencing is likely maintained by the read-write feedbacks associated with H3K27me3. A combination of noncoding SNPs in the nucleation region mediates instability in this long-term silencing phase with the result that Lov-1 FLC frequently digitally reactivates in individual cells, with a probability that diminishes with increasing cold duration. We propose that this decrease in reactivation probability is due to reduced DNA replication after flowering. Overall, this work defines an additional phase in the Polycomb mechanism instrumental in natural variation of silencing, and provides avenues to dissect broader evolutionary changes at FLC.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética/genética , Inativação Gênica , Proteínas de Domínio MADS/genética , Proteínas do Grupo Polycomb/genética , Polimorfismo de Nucleotídeo Único/genética , Replicação do DNA , Flores/metabolismo , Instabilidade Genômica/genética , Histonas/metabolismo , Temperatura
12.
Cell Syst ; 7(6): 643-655.e9, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30503646

RESUMO

Many organisms need to respond to complex, noisy environmental signals for developmental decision making. Here, we dissect how Arabidopsis plants integrate widely fluctuating field temperatures over month-long timescales to progressively upregulate VERNALIZATION INSENSITIVE3 (VIN3) and silence FLOWERING LOCUS C (FLC), aligning flowering with spring. We develop a mathematical model for vernalization that operates on multiple timescales-long term (month), short term (day), and current (hour)-and is constrained by experimental data. Our analysis demonstrates that temperature sensing is not localized to specific nodes within the FLC network. Instead, temperature sensing is broadly distributed, with each thermosensory process responding to specific features of the plants' history of exposure to warm and cold. The model accurately predicts FLC silencing in new field data, allowing us to forecast FLC expression in changing climates. We suggest that distributed thermosensing may be a general property of thermoresponsive regulatory networks in complex natural environments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Fatores de Transcrição/genética , Arabidopsis/fisiologia , Mudança Climática , Flores/genética , Flores/fisiologia , Redes Reguladoras de Genes , Modelos Biológicos , Estações do Ano , Sensação Térmica
13.
Nat Commun ; 9(1): 639, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434233

RESUMO

Plants integrate widely fluctuating temperatures to monitor seasonal progression. Here, we investigate the temperature signals in field conditions that result in vernalisation, the mechanism by which flowering is aligned with spring. We find that multiple, distinct aspects of the temperature profile contribute to vernalisation. In autumn, transient cold temperatures promote transcriptional shutdown of Arabidopsis FLOWERING LOCUS C (FLC), independently of factors conferring epigenetic memory. As winter continues, expression of VERNALIZATION INSENSITIVE3 (VIN3), a factor needed for epigenetic silencing, is upregulated by at least two independent thermosensory processes. One integrates long-term cold temperatures, while the other requires the absence of daily temperatures above 15 °C. The lack of spikes of high temperature, not just prolonged cold, is thus the major driver for vernalisation. Monitoring of peak daily temperature is an effective mechanism to judge seasonal progression, but is likely to have deleterious consequences for vernalisation as the climate becomes more variable.


Assuntos
Arabidopsis/genética , Epigênese Genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ecossistema , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J R Soc Interface ; 10(80): 20120847, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23269848

RESUMO

The optical properties of plant surfaces are strongly determined by the shape of epidermal cells and by the patterning of the cuticle on top of the cells. Combinations of particular cell shapes with particular nanoscale structures can generate a wide range of optical effects. Perhaps most notably, the development of ordered ridges of cuticle on top of flat petal cells can produce diffraction-grating-like structures. A diffraction grating is one of a number of mechanisms known to produce 'structural colours', which are more intense and pure than chemical colours and can appear iridescent. We explore the concept that mechanical buckling of the cuticle on the petal epidermis might explain the formation of cuticular ridges, using a theoretical model that accounts for the development of compressive stresses in the cuticle arising from competition between anisotropic expansion of epidermal cells and isotropic cuticle production. Model predictions rationalize cuticle patterns, including those with long-range order having the potential to generate iridescence, for a range of different flower species.


Assuntos
Embriófitas/fisiologia , Flores/fisiologia , Modelos Biológicos , Estresse Fisiológico/fisiologia , Anisotropia , Embriófitas/citologia , Flores/citologia , Especificidade da Espécie , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...