Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 557: 117856, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490340

RESUMO

The adaptability of epigenetics offers a compelling research avenue, notably in the context of Type 2 Diabetes Mellitus (T2DM) biomarkers and provides a nuanced approach to managing biological systems for diagnosis. However, challenges such as DNA degradation during methylation studies are prominent, especially with cell-free DNA (cfDNA) which is present in small quantities in plasma, calling for innovative solutions. To tackle these challenges, four methodological approaches have been identified: firstly, selecting an appropriate DNA extraction method and enhancing DNA yield through amplification; secondly, adapting bisulfite modification techniques to minimize DNA degradation; thirdly, utilizing tools capable of working with minimal DNA quantities; and lastly, employing bisulfite-free methylation techniques. A particularly promising approach is the use of Methylated CpG Tandem Amplification and Sequencing (MCTA-Seq) combined with fragmentation analysis. MCTA-Seq, especially when targeting the CGCGCGG motif sequence associated with T2DM, is an underexplored area. In addressing the dearth of the exploration, our in-silico analysis identified 66 genes with the CGCGCGG motif sequence that contribute to the pathophysiology of T2DM. Further analysis revealed five potential target genes for T2DM screening: EP300, SRC, PPARG, CREBBP, and NCOR2. The method can also be integrated into fragment analysis, notable for its ability to differentiate between long and short DNA segments effectively. Such a distinction is a valuable asset in future diagnostic methodologies, particularly relevant in the analysis of cfDNA, where high precision and sensitivity are essential. However, it is crucial to validate these genes with clinical studies to confirm their relevance and effectiveness in T2DM diagnosis.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus Tipo 2 , Ácidos Nucleicos Livres/genética , Biologia Computacional , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , DNA , Metilação de DNA , Epigênese Genética/genética
2.
Narra J ; 3(2): e184, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38450259

RESUMO

CRISPR-Cas9 has emerged as a revolutionary tool that enables precise and efficient modifications of the genetic material. This review provides a comprehensive overview of CRISPR-Cas9 technology and its applications in genome editing. We begin by describing the fundamental principles of CRISPR-Cas9 technology, explaining how the system utilizes a single guide RNA (sgRNA) to direct the Cas9 nuclease to specific DNA sequences in the genome, resulting in targeted double-stranded breaks. In this review, we provide in-depth explorations of CRISPR-Cas9 technology and its applications in agriculture, medicine, environmental sciences, fisheries, nanotechnology, bioinformatics, and biotechnology. We also highlight its potential, ongoing research, and the ethical considerations and controversies surrounding its use. This review might contribute to the understanding of CRISPR-Cas9 technology and its implications in various fields, paving the way for future developments and responsible applications of this transformative technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...