Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Methods Protoc ; 5(2)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35314657

RESUMO

Managing medical procedures for children with problematic disorders is a challenging approach, especially in the case of blood withdrawal for autism spectrum disorder-affected children. Peripheral blood mononuclear cells (PBMC) represent an important cellular model to study immune responses and drug toxicity. The monocytic cells, a fraction of PBMC, are strongly involved in some pathophysiological processes, such as inflammation and immune system changes. Here, we propose a simple, reliable protocol for obtaining peripheral blood-derived mononuclear cells from small volumes of blood samples.

2.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328471

RESUMO

Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Doenças do Sistema Imunitário , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/etiologia , Transtorno Autístico/complicações , Humanos , Doenças do Sistema Imunitário/complicações , Transtornos do Neurodesenvolvimento/complicações
3.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805951

RESUMO

Persistent deficits in social communication and interaction, and restricted, repetitive patterns of behavior, interests or activities, are the core items characterizing autism spectrum disorder (ASD). Strong inflammation states have been reported to be associated with ASD. The endocannabinoid system (ECS) may be involved in ASD pathophysiology. This complex network of lipid signaling pathways comprises arachidonic acid and 2-arachidonoyl glycerol-derived compounds, their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. Alterations of the ECS have been reported in both the brain and the immune system of ASD subjects. ASD children show low EC tone as indicated by low blood levels of endocannabinoids. Acetaminophen use has been reported to be associated with an increased risk of ASD. This drug can act through the ECS to produce analgesia. It may be that acetaminophen use in children increases the risk for ASD by interfering with the ECS.This mini-review article summarizes the current knowledge on this topic.


Assuntos
Acetaminofen/efeitos adversos , Transtorno do Espectro Autista , Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Acetaminofen/uso terapêutico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Humanos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-32033002

RESUMO

Neurodevelopmental lifelong pathologies defined by problems with social interaction, communication capacity and presence of repetitive/stereotyped clusters of behavior and interests are grouped under the definition of autism spectrum disorder (ASD). ASD prevalence is still increasing, indicating the need to identify specific biomarkers and novel pharmacotherapies. Neuroinflammation and neuro-immune cross-talk dysregulation are specific hallmarks of ASD, offering the possibility of treating these disorders by stem cell therapy. Indeed, cellular strategies have been postulated, proposed and applied to ASD. However, less is known about the molecular action mechanisms of stem cells. As a possibility, the positive and restorative effects mediated by stem cells could be due to their paracrine activity, by which stem cells produce and release several ameliorative and anti-inflammatory molecules. Among the secreted complex tools, exosomes are sub-organelles, enriched by RNA and proteins, that provide cell-to-cell communication. Exosomes could be the mediators of many stem cell-associated therapeutic activities. This review article describes the potential role of exosomes in alleviating ASD symptoms.


Assuntos
Transtorno do Espectro Autista/terapia , Exossomos/transplante , Animais , Humanos , Células-Tronco
6.
Behav Sci (Basel) ; 9(6)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212856

RESUMO

Autism spectrum disorder (ASD) is characterized by the core domains of persistent deficits in social communication and restricted-repetitive patterns of behaviors, interests, or activities. A heterogeneous and complex set of neurodevelopmental conditions are grouped in the spectrum. Pro-inflammatory events and immune system dysfunctions are cellular and molecular events associated with ASD. Several conditions co-occur with ASD: seizures, gastro-intestinal problems, attention deficit, anxiety and depression, and sleep problems. However, language and speech issues are key components of ASD symptoms current therapies find difficult to face. Several speech-stimulating substances have been shown to be effective in increasing speech ability in ASD subjects. The need for large clinical trials to determine safety and efficacy is recommended.

7.
Behav Sci (Basel) ; 9(5)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035713

RESUMO

Autism spectrum disorders (ASDs) are the most common neurodevelopmental disorders with unidentified etiology. The behavioral manifestations of ASD may be a consequence of genetic and/or environmental pathology in neurodevelopmental processes. In this limited study, we assayed autoantibodies to a panel of vital neuronal and glial proteins in the sera of 40 subjects (10 children with ASD and their mothers along with 10 healthy controls, age-matched children and their mothers). Serum samples were screened using Western Blot analysis to measure immunoglobulin (IgG) reactivity against a panel of 9 neuronal proteins commonly associated with neuronal degeneration: neurofilament triplet proteins (NFP), tubulin, microtubule-associated proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), myelin-associated glycoprotein (MAG), α-synuclein (SNCA) and astrocytes proteins such as glial fibrillary acidic protein (GFAP) and S100B protein. Our data show that the levels of circulating IgG class autoantibodies against the nine proteins were significantly elevated in ASD children. Mothers of ASD children exhibited increased levels of autoantibodies against all panel of tested proteins except for S100B and tubulin compared to age-matched healthy control children and their mothers. Control children and their mothers showed low and insignificant levels of autoantibodies to neuronal and glial proteins. These results strongly support the importance of anti-neuronal and glial protein autoantibodies biomarker in screening for ASD children and further confirm the importance of the involvement of the maternal immune system as an index that should be considered in fetal in utero environmental exposures. More studies are needed using larger cohort to verify these results and understand the importance of the presence of such autoantibodies in children with autism and their mothers, both as biomarkers and their role in the mechanism of action of autism and perhaps in its treatment.

8.
Stem Cells Cloning ; 11: 55-67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425534

RESUMO

Autism spectrum disorders (ASDs) are characterized by core domains: persistent deficits in social communication and interaction; restricted, repetitive patterns of behavior, interests, or activities. ASDs comprise heterogeneous and complex neurodevelopmental pathologies with well-defined inflammatory conditions and immune system dysfunction. Due to neurobiologic changes underlying ASD development, cell-based therapies have been proposed and applied to ASDs. Indeed, stem cells show specific immunologic properties, which make them promising candidates in ASD treatment. This comprehensive up-to-date review focuses on ASD cellular/molecular abnormalities, potentially useful stem cell types, animal models, and current clinical trials on the use of stem cells in treating autism. Limitations are also discussed.

9.
Assay Drug Dev Technol ; 16(8): 433-444, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427697

RESUMO

Over the years, scientific researches have validated the healing benefits of many psychopharmacotherapeutic plant-based drugs to ameliorate psychiatric disorders. In contrast, the use of chemical procedures to isolate and purify specific compounds from plants that have been used to treat autism spectrum disorders (ASDs) and its clinical features may contribute to improve the quality of life of many patients. Also, herbal pharmacological treatments could improve the core symptoms of autism with fewer side effects. This review will focus on the uses and actions of phytopharmaceuticals in the behavioral conditions of ASDs. A large number of natural compound-based plant drugs have been tested in murine models of autism and in clinical trials with remarkable success in reversing the core and associated behaviors with autism such as flavonoids, cannabinoids, curcuminoids, piperine, resveratrol, and bacosides. This plant-based drug alternative is safer given that many psychiatric disorders and neurodegenerative pathologies do not often respond well to currently prescribed medications or have significant side effects. However, it is noteworthy to consider the need for large clinical trials to determine safety and efficacy. Many results are based on case reports or small size samples, and often the studies are open label. Standardization of procedures (i.e., purity and concentrations) and quality controls are strictly required to ensure the absence of side effects.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/psicologia , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Preparações de Plantas/uso terapêutico , Animais , Humanos , Fitoterapia/tendências , Extratos Vegetais/isolamento & purificação , Preparações de Plantas/isolamento & purificação
10.
Pharmaceuticals (Basel) ; 11(2)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867038

RESUMO

Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests, or activities. Strong inflammation states are associated with ASD. This inflammatory condition is often linked to immune system dysfunction. Several cell types are enrolled to trigger and sustain these processes. Neuro-inflammation and neuro-immune abnormalities have now been established in ASD as key factors in its development and maintenance. In this review, we will explore inflammatory conditions, dysfunctions in neuro-immune cross-talk, and immune system treatments in ASD management.

11.
Int J Mol Sci ; 18(7)2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28671614

RESUMO

Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain's EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.


Assuntos
Transtorno do Espectro Autista/metabolismo , Endocanabinoides/metabolismo , Inflamação/patologia , Sistema Nervoso/imunologia , Transdução de Sinais , Animais , Humanos , Modelos Biológicos
12.
In Vivo ; 30(2): 83-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26912817

RESUMO

BACKGROUND/AIM: Autism spectrum disorders (ASD) are complex, and severe heterogeneous neurodevelopmental pathologies with accepted but complex immune system abnormalities. Additional knowledge regarding potential immune dysfunctions may provide a greater understanding of this malady. The aim of this study was to evaluate the CD57(+)CD3(-) mature lymphocyte subpopulation of natural killer cells as a marker of immune dysfunction in ASD. MATERIALS AND METHODS: Three-color flow cytometry-based analysis of fresh peripheral blood samples from children with autism was utilized to measure CD57(+)CD3(-) lymphocytes. RESULTS: A reduction of CD57(+)CD3(-) lymphocyte count was recorded in a significant number of patients with autism. DISCUSSION AND CONCLUSION: We demonstrated that the number of peripheral CD57(+)CD3(-) cells in children with autism often falls below the clinically accepted normal range. This implies that a defect in the counter-regulatory functions necessary for balancing pro-inflammatory cytokines exists, thus opening the way to chronic inflammatory conditions associated with ASD.


Assuntos
Transtorno do Espectro Autista/imunologia , Imunidade Inata , Contagem de Linfócitos , Subpopulações de Linfócitos/imunologia , Adolescente , Adulto , Transtorno do Espectro Autista/metabolismo , Biomarcadores , Complexo CD3/metabolismo , Antígenos CD57/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Imunofenotipagem , Subpopulações de Linfócitos/metabolismo , Masculino , Adulto Jovem
13.
Case Rep Psychiatry ; 2015: 325061, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491593

RESUMO

Introduction. Autism spectrum disorders are defined by behavioral and language atypias. Growing body of evidence indicates inflammatory mediators may contribute to the condition. Palmitoylethanolamide (PEA) is naturally occurring and has been available as a nonprescription medical food supplement in Europe since 2008. PEA has been tested in thousands of human subjects without any noted significant side effects. Here we report the first cases of the administration of PEA to two children with autism. Case Presentations. The first 13-year-old male child (Subject 1) presented with a total IgE of 572 IU/mL (nl < 200) and with low mature CD57(+) natural killer cell counts (32 cells/µL; nl = 60-300 cells/µL) and with significant eczema and allergic stigmata. Expressive language, as measured by mean length of utterance, and overall autism severity as measured by the Childhood Autism Rating Scale, Second Edition, improved significantly. Atopic symptoms diminished. No side effects were reported. The second male child, age 15 (Subject 2), also displayed noticeable and rapid improvements in cognitive, behaviors, and sociability. Conclusion. Currently, there is no definitive treatment for autism condition. Palmitoylethanolamide could be an effective treatment for autism syndrome. We propose appropriate double-blind clinical trials to further explore palmitoylethanolamide efficacy and safety.

14.
Cell Transplant ; 23 Suppl 1: S105-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302490

RESUMO

Autism spectrum disorders (ASDs) are heterogeneous complex neurodevelopmental pathologies defined by behavioral symptoms, but which have well-characterized genetic, immunological, and physiological comorbidities. Despite extensive research efforts, there are presently no agreed upon therapeutic approaches for either the core behaviors or the associated comorbidities. In particular, the known autoimmune disorders associated with autism are appealing targets for potential stem cell therapeutics. Of the various stem cell populations, fetal stem cells (FSCs) offer the potent immunoregulatory functions found in primordial mesenchymal stem cells, while exhibiting rapid expansion capacity and recognized plasticity. These properties enhance their potential for clinical use. Furthermore, FSCs are potent and implantable "biopharmacies" capable of delivering trophic signals to the host, which could influence brain development. This study investigated the safety and efficacy of FSC transplantations in treating children diagnosed with ASDs. Subjects were monitored at pre, and then 6 and 12 months following the transplantations, which consisted of two doses of intravenously and subcutaneously administered FSCs. The Autism Treatment Evaluation Checklist (ATEC) test and Aberrant Behavior Checklist (ABC) scores were performed. Laboratory examinations and clinical assessment of adverse effects were performed in order to evaluate treatment safety. No adverse events of significance were observed in ASD children treated with FSCs, including no transmitted infections or immunological complications. Statistically significant differences (p < 0.05) were shown on ATEC/ABC scores for the domains of speech, sociability, sensory, and overall health, as well as reductions in the total scores when compared to pretreatment values. We recognize that the use of FSCs remains controversial for the present. The results of this study, however, warrant additional investigations into the mechanisms of cell therapies for ASDs, while prompting the exploration of FSCs as "biopharmacies" capable of manufacturing the full array of cell-signaling chemistry. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/terapia , Células-Tronco Fetais/transplante , Transplante de Células-Tronco , Adolescente , Criança , Transtornos Globais do Desenvolvimento Infantil/imunologia , Pré-Escolar , Feminino , Células-Tronco Fetais/citologia , Humanos , Masculino , Projetos Piloto
15.
World J Stem Cells ; 6(2): 173-8, 2014 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-24772244

RESUMO

Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, abnormal to absent verbal communication, restricted interests, and repetitive stereotypic verbal and non-verbal behaviors, influencing the ability to relate to and communicate. The core symptoms of ASDs concern the cognitive, emotional, and neurobehavioural domains. The prevalence of autism appears to be increasing at an alarming rate, yet there is a lack of effective and definitive pharmacological options. This has created an increased sense of urgency, and the need to identify novel therapies. Given the growing awareness of immune dysregulation in a significant portion of the autistic population, cell therapies have been proposed and applied to ASDs. In particular, mesenchymal stem cells (MSCs) possess the immunological properties which make them promising candidates in regenerative medicine. MSC therapy may be applicable to several diseases associated with inflammation and tissue damage, where subsequent regeneration and repair is necessary. MSCs could exert a positive effect in ASDs through the following mechanisms: stimulation of repair in the damaged tissue, e.g., inflammatory bowel disease; synthesizing and releasing anti-inflammatory cytokines and survival-promoting growth factors; integrating into existing neural and synaptic network, and restoring plasticity. The paracrine mechanisms of MSCs show interesting potential in ASD treatment. Promising and impressive results have been reported from the few clinical studies published to date, although the exact mechanisms of action of MSCs in ASDs to restore functions are still largely unknown. The potential role of MSCs in mediating ASD recovery is discussed in light of the newest findings from recent clinical studies.

16.
J Neuroinflammation ; 11: 78, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24739187

RESUMO

BACKGROUND: Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. METHODS: To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. RESULTS: GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. CONCLUSIONS: This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.


Assuntos
Transtorno Autístico/patologia , Endocanabinoides/metabolismo , Fatores Ativadores de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Vitamina D/farmacologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Endocanabinoides/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Fosfolipase D/genética , Fosfolipase D/metabolismo , RNA Mensageiro/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo
17.
Stem Cells Int ; 2013: 262438, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24222772

RESUMO

Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.

18.
Curr Protein Pept Sci ; 14(8): 674-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24106964

RESUMO

Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neurodevelopmental pathologies. These enigmatic conditions have their origins in the interaction of multiple genes and environmental factors. Dysfunctions in social interactions and communication skills, restricted interests, repetitive and stereotypic verbal and non-verbal behaviours are the main core symptoms. Several biochemical processes are associated with ASDs: oxidative stress; endoplasmic reticulum stress; decreased methylation capacity; limited production of glutathione; mitochondrial dysfunction; intestinal impaired permeability and dysbiosis; increased toxic metal burden; immune dysregulation. Current available treatments for ASDs can be divided into behavioural, nutritional and medical approaches, although no defined standard approach exists. Dietary bioactive proteins and peptides show potential for application as health-promoting agents. Nowadays, increasing studies highlight a key role of bioactive proteins and peptides in ASDs. This review will focus on the state-of-the-art regarding the involvement of dietary bioactive proteins and peptides in ASDs. Identification of novel therapeutic targets for ASD management will be also discussed.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/terapia , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Transtornos Globais do Desenvolvimento Infantil/terapia , Proteínas Alimentares/uso terapêutico , Peptídeos/uso terapêutico , Animais , Proteínas Alimentares/metabolismo , Humanos , Peptídeos/metabolismo
19.
Int J Environ Res Public Health ; 10(9): 4261-73, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24030655

RESUMO

Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Animais , Transtornos Globais do Desenvolvimento Infantil/terapia , Meio Ambiente , Epigênese Genética , Histonas/metabolismo , Humanos
20.
Front Immunol ; 4: 140, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23772227

RESUMO

Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive - stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...