Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 14(5): 713-725, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37726567

RESUMO

The impact of the distribution in space of the inlet velocity in the numerical simulations of the hemodynamics in the thoracic aorta is systematically investigated. A real healthy aorta geometry, for which in-vivo measurements are available, is considered. The distribution is modeled through a truncated cone shape, which is a suitable approximation of the real one downstream of a trileaflet aortic valve during the systolic part of the cardiac cycle. The ratio between the upper and the lower base of the truncated cone and the position of the center of the upper base are selected as uncertain parameters. A stochastic approach is chosen, based on the generalized Polynomial Chaos expansion, to obtain accurate response surfaces of the quantities of interest in the parameter space. The selected parameters influence the velocity distribution in the ascending aorta. Consequently, effects on the wall shear stress are observed, confirming the need to use patient-specific inlet conditions if interested in the hemodynamics of this region. The surface base ratio is globally the most important parameter. Conversely, the impact on the velocity and wall shear stress in the aortic arch and descending aorta is almost negligible.


Assuntos
Aorta Torácica , Baías , Humanos , Aorta Torácica/fisiologia , Hemodinâmica , Aorta , Valva Aórtica , Estresse Mecânico , Velocidade do Fluxo Sanguíneo
2.
Front Cardiovasc Med ; 10: 1141623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753165

RESUMO

Background: Abdominal Aortic Aneurysm (AAA) is a balloon-like dilatation that can be life-threatening if not treated. Fabricating patient-specific AAA models can be beneficial for in-vitro investigations of hemodynamics, as well as for pre-surgical planning and training, testing the effectiveness of different interventions, or developing new surgical procedures. The current direct additive manufacturing techniques cannot simultaneously ensure the flexibility and transparency of models required by some applications. Therefore, casting techniques are presented to overcome these limitations and make the manufactured models suitable for in-vitro hemodynamic investigations, such as particle image velocimetry (PIV) measurements or medical imaging. Methods: Two complex patient-specific AAA geometries were considered, and the related 3D models were fabricated through material casting. In particular, two casting approaches, i.e. lost molds and lost core casting, were investigated and tested to manufacture the deformable AAA models. The manufactured models were acquired by magnetic resonance, computed tomography (CT), ultrasound imaging, and PIV. In particular, CT scans were segmented to generate a volumetric reconstruction for each manufactured model that was compared to a reference model to assess the accuracy of the manufacturing process. Results: Both lost molds and lost core casting techniques were successful in the manufacturing of the models. The lost molds casting allowed a high-level surface finish in the final 3D model. In this first case, the average signed distance between the manufactured model and the reference was (-0.2±0.2) mm. However, this approach was more expensive and time-consuming. On the other hand, the lost core casting was more affordable and allowed the reuse of the external molds to fabricate multiple copies of the same AAA model. In this second case, the average signed distance between the manufactured model and the reference was (0.1±0.6) mm. However, the final model's surface finish quality was poorer compared to the model obtained by lost molds casting as the sealing of the outer molds was not as firm as the other casting technique. Conclusions: Both lost molds and lost core casting techniques can be used for manufacturing patient-specific deformable AAA models suitable for hemodynamic investigations, including medical imaging and PIV.

3.
J Cardiovasc Dev Dis ; 10(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975873

RESUMO

INTRODUCTION: Patient-specific computational models are a powerful tool for planning cardiovascular interventions. However, the in vivo patient-specific mechanical properties of vessels represent a major source of uncertainty. In this study, we investigated the effect of uncertainty in the elastic module (E) on a Fluid-Structure Interaction (FSI) model of a patient-specific aorta. METHODS: The image-based χ-method was used to compute the initial E value of the vascular wall. The uncertainty quantification was carried out using the generalized Polynomial Chaos (gPC) expansion technique. The stochastic analysis was based on four deterministic simulations considering four quadrature points. A deviation of about ±20% on the estimation of the E value was assumed. RESULTS: The influence of the uncertain E parameter was evaluated along the cardiac cycle on area and flow variations extracted from five cross-sections of the aortic FSI model. Results of stochastic analysis showed the impact of E in the ascending aorta while an insignificant effect was observed in the descending tract. CONCLUSIONS: This study demonstrated the importance of the image-based methodology for inferring E, highlighting the feasibility of retrieving useful additional data and enhancing the reliability of in silico models in clinical practice.

4.
Med Eng Phys ; 107: 103873, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36068045

RESUMO

Magnetic resonance imaging (MRI) is the preferred modality to assess hemodynamics in healthy and diseased blood vessels. As an affordable and non-invasive alternative, Color-Doppler imaging is a good candidate. Nevertheless, Color-Doppler acquisitions provide only partial information on the blood velocity within the vessel. We present a framework to reconstruct 2D velocity fields in the aorta. We generated 2D Color-Doppler-like images from patient-specific Computational Fluid Dynamics (CFD) models of abdominal aortas and evaluated the framework's performance. The 2D velocity field reconstruction is based on the minimization of a cost function, in which the reconstructed velocities are constrained to satisfy fluid dynamics principles. The numerical evaluations show that the reconstructed vector flow fields agree with ground-truth velocities, with an average magnitude error of less than 4% and an average angular error of less than 2∘. We lastly illustrate the 2D velocity field reconstructed from in-vivo Color-Doppler data. Observing the hemodynamics in patients is expected to have a clinical impact in assessing disease development and progression, such as abdominal aortic aneurysms.


Assuntos
Aorta Abdominal , Hemodinâmica , Aorta Abdominal/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Humanos , Hidrodinâmica , Ultrassonografia Doppler
5.
Ann Biomed Eng ; 49(12): 3494-3507, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431017

RESUMO

Computational Fluid Dynamics (CFD) simulations of blood flow are widely used to compute a variety of hemodynamic indicators such as velocity, time-varying wall shear stress, pressure drop, and energy losses. One of the major advances of this approach is that it is non-invasive. The accuracy of the cardiovascular simulations depends directly on the level of certainty on input parameters due to the modelling assumptions or computational settings. Physiologically suitable boundary conditions at the inlet and outlet of the computational domain are needed to perform a patient-specific CFD analysis. These conditions are often affected by uncertainties, whose impact can be quantified through a stochastic approach. A methodology based on a full propagation of the uncertainty from clinical data to model results is proposed here. It was possible to estimate the confidence associated with model predictions, differently than by deterministic simulations. We evaluated the effect of using three-element Windkessel models as the outflow boundary conditions of a patient-specific aortic coarctation model. A parameter was introduced to calibrate the resistances of the Windkessel model at the outlets. The generalized Polynomial Chaos method was adopted to perform the stochastic analysis, starting from a few deterministic simulations. Our results show that the uncertainty of the input parameter gave a remarkable variability on the volume flow rate waveform at the systolic peak simulating the conditions before the treatment. The same uncertain parameter had a slighter effect on other quantities of interest, such as the pressure gradient. Furthermore, the results highlight that the fine-tuning of Windkessel resistances is not necessary to simulate the post-stenting scenario.


Assuntos
Coartação Aórtica/fisiopatologia , Hemodinâmica , Hidrodinâmica , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Coartação Aórtica/cirurgia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Simulação por Computador , Humanos , Stents , Processos Estocásticos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...