Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339671

RESUMO

To characterize fine particulate products in industrial gas-solid processes, insights into the particle properties are accessible via various measurement techniques. For micron particles, online imaging techniques offer a fast and reliable assessment of their size and shape. However, for the shape analysis of submicron particles, only offline techniques, such as SEM and TEM imaging, are available. In this work, an online sensor system based on the principle of elastic light scattering of particles in the gas phase is developed to measure the shape factor of non-spherical particles in the size range of 500 nm to 5 µm. Single aerosol particles are guided through a monochromatic circularly polarized laser light beam by an aerodynamic focusing nozzle, which was developed based on the CFD simulation of the flow and particle movement. The intensity of the scattered light is measured at several discrete positions in the azimuthal direction around the particles. An algorithm computes the sphericity of the particles based on the distribution of the intensity signals. The sensor construction, data processing and analysis are described. Model aerosols with particles of different shapes are investigated to test the developed sensor and show its performance in the determination of the sphericity distribution of particles.

2.
Membranes (Basel) ; 13(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37755223

RESUMO

In the field of liquid filtration, the realization of gas throughput-free cake filtration has been investigated for a long time. Cake filtration without gas throughput would lead to energy savings in general and would reduce the mechanically achievable residual moisture in filter cakes in particular. The reason why gas throughput-free filtration could not be realized with fabrics so far is that the achievable pore sizes are not small enough, and that the associated capillary pressure is too low for gas throughput-free filtration. Microporous membranes can prevent gas flow through open pores and cracks in the filter cake at a standard differential pressure for cake filtration of 0.8 bar due to their smaller pore size. Since large-scale implementation with membranes was not yet successful due to their inadequate mechanical strength, this work focuses on the development and testing of a novel composite material. It combines the advantages of gas throughput-free filtration using membranes with the mechanical stability of fabrics. For the production of the composites, a paste dot coating with adhesive, which is a common method in the textile industry, was used. Based on filtration experiments, delamination and tensile tests, as well as µCT analysis, it is shown that this method is suitable for the production of composite filter materials for gas throughput-free cake filtration.

3.
Membranes (Basel) ; 13(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37505030

RESUMO

The modified fouling index (MFI) is a crucial characteristic for assessing the fouling potential of reverse osmosis (RO) feed water. Although the MFI is widely used, the estimation time required for filtration and data evaluation is still relatively long. In this study, the relationship between the MFI and instantaneous spectroscopic extinction measurements was investigated. Since both measurements show a linear correlation with particle concentration, it was assumed that a change in the MFI can be detected by monitoring the optical density of the feed water. To prove this assumption, a test bench for a simultaneous measurement of the MFI and optical extinction was designed. Silica monospheres with sizes of 120 nm and 400 nm and mixtures of both fractions were added to purified tap water as model foulants. MFI filtration tests were performed with a standard 0.45 µm PES membrane, and a 0.1 µm PP membrane. Extinction measurements were carried out with a newly designed flow cell inside a UV-VIS spectrometer to get online information on the particle properties of the feed water, such as the particle concentration and mean particle size. The measurement results show that the extinction ratio of different light wavelengths, which should remain constant for a particulate system, independent of the number of particles, only persisted at higher particle concentrations. Nevertheless, a good correlation between extinction and MFI for different particle concentrations with restrictions towards the ratio of particle and pore size of the test membrane was found. These findings can be used for new sensory process monitoring systems, if the deficiencies can be overcome.

4.
Pharmaceutics ; 15(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36839791

RESUMO

In the pharmaceutical industry, the coating of particles is a widely used technique to obtain desired surface modifications of the final product, e.g., controlled release of the active agents. The production of round, coated particles is particularly important, which is why fluidized bed rotor granulators (FBRG) are often used for this process. In this work, Computational Fluid Dynamics (CFD) coupled with the Discrete Element Method (DEM) is used to investigate the wet particle dynamics, depending on the properties of the coating liquid in a FBRG. The DEM contact model was extended by liquid bridge model to account for capillary and viscous forces during wet contact of particles. The influence of the relative contact velocity on the maximum length of the liquid bridge is also considered in the model. Five different cases were compared, in which the particles were initially wetted, and the liquid loading as well as the surface tension and viscosity of the liquid were changed. The results show that increasing viscosity leads to a denser particle bed and a significant decrease in particle rotational velocities and particle motion in the poloidal plane of the FBRG. Reducing the liquid loading and surface tension results in increased particle movement.

5.
Flow Turbul Combust ; 110(3): 581-600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714791

RESUMO

Three secondary flows, namely the inward radial flow along the cyclone lid, the downward axial flow along the external surface of the vortex finder, and the radial inward flow below the vortex finder (lip flow) have been studied at a wide range of flow rate 0.22-7.54 LPM using the LES simulations. To evaluate these flows the corresponding methods were originally proposed. The highly significant effect of the Reynolds number on these secondary flows has been described by equations. The main finding is that the magnitude of all secondary flows decrease with increasing Reynolds number. The secondary inward radial flow along the cyclone lid is not constant and reaches its maximum value at the central radial position between the vortex finder external wall and the cyclone wall. The secondary downward axial flow along the external surface of the vortex finder significantly increases at the lowest part of the vortex finder and it is much larger than the secondary flow along the cyclone lid. The lip flow is much larger than the secondary inward radial flow along the cyclone lid, which was assumed in cyclone models to be equal to the lip flow, and the ratio of these two secondary flows is practically independent of the Reynolds number.

6.
Chem Commun (Camb) ; 58(1): 112-115, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34877940

RESUMO

Synthesis of a Janus periodic mesoporous organosilica material (JPMO) is presented here. In this strategy, the surface of the hollow silica material was selectively functionalized with two different bridged organic-inorganic hybrid groups. It was found that the resulting bifunctional material is able to form a stable Pickering emulsion. This new type of PMO material may be suitable for widespread applications in various fields related to material science and catalysis.


Assuntos
Compostos de Organossilício/química , Estrutura Molecular , Compostos de Organossilício/síntese química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
7.
Eur J Pharm Biopharm ; 160: 92-99, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516794

RESUMO

Previously published mechanisms of pellet formation during extrusion-spheronization include a transfer of material between different granules. This research aimed to specify the origin of this transfered mass, enabling further insight into the extrusion-spheronization process. Granules of various diameters were rounded simultaniously in a spheronizer to ascertain if mass transfer between smaller and larger granules is truly in balance, or if mass transfer from smaller to larger granules is preferred. Granules were also marked with a fluorescent tracer to enable quantification of mass transfer. By using differently sized and shaped granules as starting material, different modes of mass transfer were investigated. Samples were taken after various process durations to investigate the kinetics of the tranfer mechanism. It was found that both small and large granules dispense and receive mass during spheronization. In general, small granules increase their size, while large granules maintain their size or show a slight size decrease, resulting in the particularly narrow monomodal size distribution.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Química Farmacêutica , Tamanho da Partícula
8.
Pharm Dev Technol ; 24(8): 1014-1020, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31232624

RESUMO

Previously described scaling models for the spheronization process of wet extrudates are incomplete, often concluding with an adjustment of the plate speed according to the spheronizer diameter, but neglecting to give guidelines on the adjustment of the load or the process duration. In this work, existing scaling models were extended to include the load and the process time. By analyzing the final particle size and shape distributions as well as the rounding kinetics for various loads and plate speeds in spheronizers with plate diameters of 0.12 m, 0.25 m and 0.38 m, the found scaling model was validated. The peripheral speed was found to be the main influence on the rounding kinetic, while the load and the plate diameter only showed minor influence. Higher peripheral speeds, higher loads and a larger spheronizer diameter led to an increase in rounding kinetic, allowing for shorter residence times and increased throughput. However, lower peripheral speed, lower loads and lower plate diameters led to particles of increased sphericity.


Assuntos
Preparações Farmacêuticas/química , Celulose/química , Composição de Medicamentos/métodos , Excipientes/química , Cinética , Lactose/química , Microesferas , Tamanho da Partícula
9.
Eng Life Sci ; 17(8): 865-873, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32624834

RESUMO

Microorganisms growing in biofilms might be possible biocatalysts for future biotechnological production processes. Attached to a surface and embedded in an extracellular polymeric matrix, they create their preferred environment and form robust cultures for continuous systems. With the objective of implementing highly efficient processes, productive biofilms need to be understood comprehensively. In this study, the influence of microstructured metallic surfaces on biofilm productivity was researched. To conduct this study, titanium and stainless steel sheets were polished, micromilled, as well as coated with particles. Subsequently, the metal sheets were exposed to the lactic acid producing Lactobacillus delbrueckii subsp. lactis under laminar and homogeneous flow conditions in a custom-built flow cell. A proof-of-concept showed that biofilm formation in the system only occurred on the designated substratum. Following a 24-h batch cultivation for primary biofilm development, the culture was continuously provided with glucose containing medium. As different experimental series have indicated, the process resulted to be stable for up to eleven days. Primary metabolite productivity averaged around 6-7 g/(L h). Interestingly, the productivity was shown to be affected neither by the type of metal, nor by the applied microstructures. Nevertheless, a higher dry biomass weight determined on micro-milled substratum indicates a complementary differentiation of biofilm components in future experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...