Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 956095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275624

RESUMO

Drug resistance to front-line malarial treatments represents an ongoing threat to control malaria, a vector borne infectious disease. The malarial parasite, Plasmodium falciparum has developed genetic variants, conferring resistance to the current standard therapeutic artemisinin and its derivatives commonly referred to as artemisinin-combination therapies (ACTs). Emergence of multi-drug resistance parasite genotypes is a warning of potential treatment failure, reaffirming the urgent and critical need to find and validate alternate drug targets to prevent the spread of disease. An attractive and novel drug target includes glucose-regulated protein 78 kDa (GRP78, or BiP), an essential molecular chaperone protein involved in the unfolded protein response that is upregulated in ACT treated P. falciparum parasites. We have shown that both sequence and structure are closely related to human GRP78 (hGRP78), a chaperone belonging to the HSP70 class of ATPase proteins, which is often upregulated in cellular stress responses and cancer. By screening a library of nucleoside analogues, we identified eight 'hit' compounds binding at the active site of the ATP binding domain of P. falciparum GRP78 using a high-throughput ligand soaking screen using x-ray crystallography. These compounds were further evaluated using protein thermal shift assays to assess target binding activity. The nucleoside analogues identified from our screen provide a starting point for the development of more potent and selective antimalarial inhibitors. In addition, we have established a well-defined, high-throughput crystal-based screening approach that can be applied to many crystallizable P. falciparum proteins for generating anti-Plasmodium specific compounds.

2.
Am J Med Genet A ; 179(4): 534-541, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30740902

RESUMO

Mutations in the COMP, COL9A1, COL9A2, COL9A3, MATN3, and SLC26A2 genes cause approximately 70% of multiple epiphyseal dysplasia (MED) cases. The genetic changes involved in the etiology of the remaining cases are still unknown, suggesting that other genes contribute to MED development. Our goal was to identify a mutation causing an autosomal dominant form of MED in a large multigenerational family. Initially, we excluded all genes known to be associated with autosomal dominant MED by using microsatellite and SNP markers. Follow-up with whole-exome sequencing analysis revealed a mutation c.2032G>A (p.Gly678Arg) in the COL2A1 gene (NCBI Reference Sequence: NM_001844.4), which co-segregated with the disease phenotype in this family, manifested by severe hip dysplasia and osteoarthritis. One of the affected family members had a double-layered patella, which is frequently seen in patients with autosomal recessive MED caused by DTDST mutations and sporadically in the dominant form of MED caused by COL9A2 defect.


Assuntos
Colágeno Tipo II/genética , Sequenciamento do Exoma/métodos , Éxons/genética , Mutação , Osteocondrodisplasias/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
3.
Sci Rep ; 8(1): 10333, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985421

RESUMO

Drug resistant Plasmodium falciparum parasites represent a major obstacle in our efforts to control malaria, a deadly vector borne infectious disease. This situation creates an urgent need to find and validate new drug targets to contain the spread of the disease. Several genes associated with the unfolded protein response (UPR) including Glucose-regulated Protein 78 kDa (GRP78, also known as BiP) have been deemed potential drug targets. We explored the drug target potential of GRP78, a molecular chaperone that is a regulator of the UPR, for the treatment of P. falciparum parasite infection. By screening repurposed chaperone inhibitors that are anticancer agents, we showed that GRP78 inhibition is lethal to drug-sensitive and -resistant P. falciparum parasite strains in vitro. We correlated the antiplasmodial activity of the inhibitors with their ability to bind the malaria chaperone, by characterizing their binding to recombinant parasite GRP78. Furthermore, we determined the crystal structure of the ATP binding domain of P. falciparum GRP78 with ADP and identified structural features unique to the parasite. These data suggest that P. falciparum GRP78 can be a valid drug target and that its structural differences to human GRP78 emphasize potential to generate parasite specific compounds.


Assuntos
Antimaláricos/farmacologia , Reposicionamento de Medicamentos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Resposta a Proteínas não Dobradas , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Antimaláricos/química , Antimaláricos/metabolismo , Benzamidas/farmacologia , Cristalografia por Raios X , Resistência a Medicamentos/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Imidazóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
ACS Infect Dis ; 2(9): 627-641, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27759386

RESUMO

The potent antistaphylococcal activity of N-substituted pantothenamides (PanAms) has been shown to at least partially be due to the inhibition of Staphylococcus aureus's atypical type II pantothenate kinase (SaPanKII), the first enzyme of coenzyme A biosynthesis. This mechanism of action follows from SaPanKII having a binding mode for PanAms that is distinct from those of other PanKs. To dissect the molecular interactions responsible for PanAm inhibitory activity, we conducted a mini SAR study in tandem with the cocrystallization of SaPanKII with two classic PanAms (N5-Pan and N7-Pan), culminating in the synthesis and characterization of two new PanAms, N-Pip-PanAm and MeO-N5-PanAm. The cocrystal structures showed that all of the PanAms are phosphorylated by SaPanKII but remain bound at the active site; this occurs primarily through interactions with Tyr240' and Thr172'. Kinetic analysis showed a strong correlation between kcat (slow PanAm turnover) and IC50 (inhibition of pantothenate phosphorylation) values, suggesting that SaPanKII inhibition occurs via a delay in product release. In-depth analysis of the PanAm-bound structures showed that the capacity for accepting a hydrogen bond from the amide of Thr172' was a stronger determinant for PanAm potency than the capacity to π-stack with Tyr240'. The two new PanAms, N-Pip-PanAm and MeO-N5-PanAm, effectively combine both hydrogen bonding and hydrophobic interactions, resulting in the most potent SaPanKII inhibition described to date. Taken together, our results are consistent with an inhibition mechanism wherein PanAms act as SaPanKII substrates that remain bound upon phosphorylation. The phospho-PanAm-SaPanKII interactions described herein may help future antistaphylococcal drug development.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Relação Estrutura-Atividade
5.
PLoS One ; 11(6): e0158256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27327447

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0154862.].

6.
PLoS One ; 11(5): e0154862, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144892

RESUMO

GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATP analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the ß-γ bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the ß-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Together, our results demonstrate that GRP78ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the ß-γ bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.


Assuntos
Trifosfato de Adenosina/metabolismo , Domínio Catalítico/fisiologia , Proteínas de Choque Térmico/metabolismo , Polifosfatos/metabolismo , Ligação Proteica/fisiologia , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos , Ligantes , Magnésio/metabolismo
7.
Proteins ; 82(7): 1542-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24470271

RESUMO

Pantothenate kinase (PanK) is the rate-limiting enzyme in Coenzyme A biosynthesis, catalyzing the ATP-dependent phosphorylation of pantothenate. We solved the co-crystal structures of PanKs from Staphylococcus aureus (SaPanK) and Klebsiella pneumonia (KpPanK) with N-[2-(1,3-benzodioxol-5-yl)ethyl] pantothenamide (N354-Pan). Two different N354-Pan conformers interact with polar/nonpolar mixed residues in SaPanK and aromatic residues in KpPanK. Additionally, phosphorylated N354-Pan is found at the closed active site of SaPanK but not at the open active site of KpPanK, suggesting an exchange of the phosphorylated product with a new N354-Pan only in KpPanK. Together, pantothenamides conformational flexibility and binding pocket are two key considerations for selective compound design.


Assuntos
Klebsiella pneumoniae/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Staphylococcus aureus/enzimologia , Amidas/química , Amidas/metabolismo , Coenzima A , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...