Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374907

RESUMO

The paper searches for new solutions for the development of highbush blueberry orchards (Vaccinium corymbosum L. (1753)) in Western Siberia. All species of the genus Vaccinium display special symbiotic mycorrhizal associations with root systems-ericoid mycorrhiza, which essentially enhances the formation of adventitious and lateral roots. For the first time, we obtained pure cultures of micromycetes associated with the roots of wild species of the family Ericaceae in the Tomsk region, Russia. With regard to the data of molecular genetic analysis of the ITS region sequence, we selected the BR2-1 isolate based on its morphophysiological traits, which was assigned to the genus Leptodophora. Representatives of this genus typically enter into symbiotic relationships with heathers to form ericoid mycorrhizae. We studied the effect of strain BR2-1 on the development of microclones of the highbush blueberry var. Nord blue during their in vitro adaptation and showed its beneficial effect on growth and shoot formation in young plants. Experiments performed using submerged and solid-state methods showed that the most optimal method for commercial production of BR2-1 is cultivation on grain sterilized by boiling, followed by spore washing.

3.
Anaerobe ; 56: 66-77, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30776428

RESUMO

Recent reports on antimicrobial effects of metallic Cu prompted this study of anaerobic microbial communities on copper surfaces. Widely circulating copper-containing coinage was used as a potential source for microorganisms that had had human contact and were tolerant to copper. This study reports on the isolation, characterization, and genome of an anaerobic sulfidogenic Tissierella sp. P1from copper-containing brass coinage. Dissimilatory (bi)sulfite reductase dsrAB present in strain P1 genome and the visible absorbance around 630 nm in the cells suggested the presence of a desulfoviridin-type protein. However, the sulfate reduction rate measurements with 35SO42- did not confirm the dissimilatory sulfate reduction by the strain. The P1 genome lacks APS reductase, sulfate adenylyltransferase, DsrC, and DsrMK necessary for dissimilatory sulfate reduction. The isolate produced up to 0.79 mM H2S during growth, possibly due to cysteine synthase (CysK) and/or cysteine desulfhydrase (CdsH) activities, encoded in the genome. The strain can tolerate up to 2.4 mM Cu2+(150 mg/l) in liquid medium, shows affinity to metallic copper, and can survive on copper-containing coins up to three days under ambient air and dry conditions. The genome sequence of strain P1 contained cutC, encoding a copper resistance protein, which distinguishes it from all other Tissierella strains with published genomes.


Assuntos
Cobre/análise , Microbiologia Ambiental , Firmicutes/classificação , Firmicutes/isolamento & purificação , Sulfetos/metabolismo , Zinco/análise , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Cobre/toxicidade , Tolerância a Medicamentos , Firmicutes/metabolismo , Genes Bacterianos , Genoma Bacteriano , Sulfito de Hidrogênio Redutase/genética , Redes e Vias Metabólicas/genética , Numismática , Zinco/toxicidade
4.
Sci Rep ; 8(1): 6730, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712968

RESUMO

Thermal ecosystems associated with underground coal combustion sites are rare and less studied than geothermal features. Here we analysed microbial communities of near-surface ground layer and bituminous substance in an open quarry heated by subsurface coal fire by metagenomic DNA sequencing. Taxonomic classification revealed dominance of only a few groups of Firmicutes. Near-complete genomes of three most abundant species, 'Candidatus Carbobacillus altaicus' AL32, Brockia lithotrophica AL31, and Hydrogenibacillus schlegelii AL33, were assembled. According to the genomic data, Ca. Carbobacillus altaicus AL32 is an aerobic heterotroph, while B. lithotrophica AL31 is a chemolithotrophic anaerobe assimilating CO2 via the Calvin cycle. H. schlegelii AL33 is an aerobe capable of both growth on organic compounds and carrying out CO2 fixation via the Calvin cycle. Phylogenetic analysis of the large subunit of RuBisCO of B. lithotrophica AL31 and H. schlegelii AL33 showed that it belongs to the type 1-E. All three Firmicutes species can gain energy from aerobic or anaerobic oxidation of molecular hydrogen, produced as a result of underground coal combustion along with other coal gases. We propose that thermophilic Firmicutes, whose spores can spread from their original geothermal habitats over long distances, are the first colonizers of this recently formed thermal ecosystem.


Assuntos
Bactérias Anaeróbias/genética , Carvão Mineral/microbiologia , Metagenômica , Microbiota/genética , Bactérias Anaeróbias/classificação , Dióxido de Carbono/metabolismo , Temperatura Alta , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Antonie Van Leeuwenhoek ; 110(12): 1669-1679, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28748290

RESUMO

Almost all the known isolates of acidophilic or acid-tolerant sulphate-reducing bacteria (SRB) belong to the spore-forming genus Desulfosporosinus in the Firmicutes. The objective of this study was to isolate acidophilic/acid-tolerant members of the genus Desulfovibrio belonging to deltaproteobacterial SRB. The sample material originated from microbial mat biomass submerged in mine water and was enriched for sulphate reducers by cultivation in anaerobic medium with lactate as an electron donor. A stirred tank bioreactor with the same medium composition was inoculated with the sulphidogenic enrichment. The bioreactor was operated with a temporal pH gradient, changing daily, from an initial pH of 7.3 to a final pH of 3.7. Among the bacteria in the bioreactor culture, Desulfovibrio was the only SRB group retrieved from the bioreactor consortium as observed by 16S rRNA-targeted denaturing gradient gel electrophoresis. Moderately acidophilic/acid-tolerant isolates belonged to Desulfovibrio aerotolerans-Desulfovibrio carbinophilus-Desulfovibrio magneticus and Desulfovibrio idahonensis-Desulfovibrio mexicanus clades within the genus Desulfovibrio. A moderately acidophilic strain, Desulfovibrio sp. VK (pH optimum 5.7) and acid-tolerant Desulfovibrio sp. ED (pH optimum 6.6) dominated in the bioreactor consortium at different time points and were isolated in pure culture.


Assuntos
Adaptação Biológica , Reatores Biológicos , Desulfovibrio/isolamento & purificação , Desulfovibrio/metabolismo , Microbiologia Ambiental , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Desulfovibrio/classificação , Desulfovibrio/genética , Mineração , Filogenia , Análise de Sequência de DNA , Microbiologia da Água
6.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222219

RESUMO

Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches.


Assuntos
Mineração , Peptococcaceae/genética , Adaptação Fisiológica , Cobre/metabolismo , Genômica , Ouro , Oxirredução , Peptococcaceae/fisiologia , Filogenia , Sibéria , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...