Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 8: 218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296681

RESUMO

Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.

2.
Mol Ther Nucleic Acids ; 18: 863-870, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31739211

RESUMO

Oligoarginine sequences conjugated to a short cancer-targeting peptide (CTP) selective for the prostate-specific membrane antigen (PSMA) receptor was developed for selective small interfering RNA (siRNA) delivery to a human metastatic/castration-resistant prostate cancer (PCa) cell line, which expresses PSMA on the surface. The PSMA-Rn (n = 6 and 9) peptides were synthesized by solid-phase peptide synthesis, characterized by liquid chromatography-mass spectrometry (LC-MS) and condensed with glucose-regulated protein (GRP)-silencing siRNAs. Native gels showed formation of stable CTP:siRNA ionic complexes. Furthermore, siRNA release was effected by heparin competition, supporting the peptides' capabilities to act as condensing and releasing agents. However, dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies revealed large anionic complexes that were prone to aggregation and limited cell uptake for RNAi activity. Taken together, these data support the notion that the development of efficient peptide-based siRNA delivery systems is in part contingent on the formulation of discrete nanoparticles that can effectively condense and release siRNA in cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...