Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 122: 104981, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33302041

RESUMO

OBJECTIVE: This study aims to investigate the role of p38 Mitogen-activated protein kinase (MAPK) in imparting cisplatin resistance in head and neck squamous cell carcinoma (HNSCC) cells. DESIGN: Laboratory generated cisplatin resistant HNSCC cells were treated with p38 inhibitor and were subjected to increasing dosage of cisplatin. Western blot, immunohistochemistry and RT PCR analysis were performed to investigate expression level of p-p38 and Cancer stem cell (CSC) markers in cisplatin resistant HNSCC cells with or without p38 inhibitor. Chemoresistance, wound healing capacity and Spheroids formation capacity were assessed following p38 inhibition in cisplatin resistant HNSCC cell lines. In addition, alkaline comet assay and γ-H2AX immunostaining were performed to evaluate the DNA damage response and repair abilities in cisplatin resistant HNSCC cells after p38 inhibition. RESULTS: It was observed that following p38 inhibition, cisplatin resistant HNSCC cells exhibited significant reduction in expression of CSC markers, ß-catenin, reduced migration potential and sphere forming ability along with increased apoptotic index demonstrating there was increased sensitivity towards Cisplatin. Molecular docking study identified several interface amino acid residues between p-p38 with CSC markers (Klf4 and CD44). p38 inhibited cisplatin resistant HNSCC cells also exhibited increased DNA damage as measured by Comet assay and γ-H2AX foci formation index. There was significant decrease in DNA repair as confirmed by reduced ERRC1 expression. CONCLUSIONS: Our study demonstrated that p38 MAPK inhibition can be a targeted approach to overcome resistance in HNSCC thereby escalating the effectiveness of chemotherapy in HNSCC.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Linhagem Celular Tumoral , Dano ao DNA , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Fator 4 Semelhante a Kruppel , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
2.
Int J Radiat Biol ; 96(6): 790-802, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31985344

RESUMO

Aims: Radiotherapy is predominantly used as one of the treatment modalities to treat local tumor in colorectal cancer (CRC). Hindrance in disease treatment can be attributed to radio-tolerance of cancer stem cells (CSCs) subsistence in the tumor. Understanding the radio-resistant property of CSCs might help in the accomplishment of targeted radiotherapy treatment and increased disease-free survival. Telomeric RAP1 contributes in modulation of various transcription factors leading to aberrant cell proliferation and tumor cell migration. Therefore, we investigated the role of RAP1 in maintaining resistance phenotype and acquired stemness in radio-resistant cells.Main methods: Characterization of HCT116 derived radio-resistant cell (HCT116RR) was performed by cell survival and DNA damage profiling. RAP1 silenced cells were investigated for DNA damage and expression of CSC markers through western blotting and Real-time PCR post-irradiation. Molecular docking and co-immunoprecipitation study were performed to investigate RAP1 and KLF4 interaction followed by RAP1 protein status profiling in CRC patient.Key findings: We established radio-resistant cells, which showed tolerance to radiotherapy and elevated expression of CSC markers along with RAP1. RAP1 silencing showed enhanced DNA damage and reduced expression of CSC markers post-irradiation. We observed strong physical interaction between RAP1 and KLF4 protein. Furthermore, higher RAP1 expression was observed in the tumor of CRC patients. Dataset analysis also revealed that high expression of RAP1 expression is associated with poor prognosis.Significance: We conclude that higher expression of RAP1 implicates its possible role in promoting radio-resistance in CRC cells by modulating DNA damage and CSC phenotype.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/radioterapia , Fatores de Transcrição Kruppel-Like/metabolismo , Tolerância a Radiação , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Biomarcadores Tumorais/química , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Feminino , Inativação Gênica , Células HCT116 , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/química , Masculino , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Prognóstico , Ligação Proteica , Domínios Proteicos , Complexo Shelterina
3.
Front Pharmacol ; 11: 585821, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597872

RESUMO

Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.

4.
Int J Radiat Biol ; 95(6): 667-679, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30753097

RESUMO

Purpose: Radiation therapy is an integral part of current treatment modality for colorectal cancer. Recent studies have revealed the presence of cancer stem-like cells (CSCs) population, in different tumors are responsible for therapeutic resistance and disease relapse, including colorectal cancer with poorer survival rate. Hence, characterization of the effect of Ionizing Radiation (IR) in colorectal cancer may serve to explain possible mechanisms. Material and methods: Parental HCT116 and HCT-15 cells and derived colonospheres were irradiated and dose was optimized based on cell survival assay and cell cycle analysis. DNA damage response (DDR) was elucidated by γH2AX foci formation, COMET assay, and ATM, p-ATM, ERCC1 expression post-treatment. The expression level of developmental marker (ß-catenin), CSC markers (CD44, KLF4) and telomeric components (TRF2, RAP1, hTERT) were evaluated. Results: We observed cell survival was more in colonospheres post-irradiation and also exhibited decreased γH2AX foci, olive tail moment, increased ERCC1, and p-ATM expression than its parental counterpart which corresponds to efficient DDR. Differential expression of developmental marker, CSC markers, and telomeric components were observed after irradiation. Conclusion: This study highlighted the presence of CSC phenotype in colonospheres having increased DNA repair capacity. Differential expression of developmental marker, CSC markers and telomeric components between parental and colonospheres may contribute in radio-resistance property of CSCs.


Assuntos
Neoplasias Colorretais/patologia , Dano ao DNA , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HCT116 , Humanos , Receptores de Hialuronatos/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Telomerase/genética , beta Catenina/genética
5.
Arch Microbiol ; 201(4): 487-498, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30386884

RESUMO

Genomic instability resulting from oxidative stress responses may be traced to chromosomal aberration. Oxidative stress suggests an imbalance between the systemic manifestation of reactive free radicals and biological system's ability to repair resulting DNA damage and chromosomal aberration. Bacterial infection associated insult is considered as one of the major factors leading to such stress conditions. To study free radical responses by host cells, RAW 264.7 macrophages were infected with non-pathogenic M. smegmatis mc2155 at different time points. The infection process was followed up with an assessment of free radical stress, cytokine, toll-like receptors (TLRs) and the resulting DNA damage profiles. Results of CFU count showed that maximum infection in macrophages was achieved after 9 h of infection. Host responses to the infection across different time periods were validated from nitric oxide quantification and expression of iNOS and were plotted at regular intervals. IL-10 and TNF-α expression profile at protein and mRNA level showed a heightened pro-inflammatory response by host macrophages to combat M. smegmatis infection. The expression of TLR4, a receptor for recognition of mycobacteria, in infected macrophages reached the highest level at 9 h of infection. Furthermore, comet tail length, micronuclei and γ-H2AX foci recorded the highest level at 9 h of infection, pointing to the fact that breakage in DNA double strands in macrophage reaches its peak at 9 h of infection. In contrast, treatment with ROS inhibitor N-acetyl-L-cysteine (NAC) prevented host cell death through reduction in oxidative stress and DNA damage response during M. smegmatis infection. Therefore, it can be concluded that enhanced oxidative stress response in M. smegmatis infected macrophages might be correlated with DNA damage response.


Assuntos
Dano ao DNA , Macrófagos/microbiologia , Mycobacterium smegmatis/fisiologia , Estresse Oxidativo , Animais , Citocinas/genética , Citocinas/metabolismo , Radicais Livres/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo
6.
J Oral Pathol Med ; 47(5): 492-501, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575240

RESUMO

AIM: This study aimed to investigate the role of p38 MAPK in maintenance of cancer stem cell (CSC) phenotype, therapy resistance, and DNA damage repair and response in head and neck squamous cell carcinoma (HNSCC). METHODS: In this study, 104 HNSCC patients were included. Western blot, immunohistochemistry, and qPCR analysis were performed to investigate the expression level of p-p38 and CSC markers in cut margin and tumor area of HNSCC patients. The expression level of p-p38 and CSC markers was also evaluated in HNSCC cells with or without p38 inhibitor. Chemoresistance, wound healing capacity, and multicellular tumor spheroids (MCTS) formation capacity were evaluated in HNSCC-derived cell lines with or without p38 inhibitor. In addition, DNA damage response and repair capacities were also evaluated in HNSCC cells after p38 inhibition using alkaline comet assay and γ-H2 AX immunostaining. RESULT: We observed that recurrence could be associated with upregulated status of p-p38 and p38α gene in cut margin area of HNSCC patients as compared to tumor region. p38-inhibited cells showed significantly reduced expression of CSC markers, chemosensitivity toward cisplatin, reduced migration potential, and sphere-forming ability along with increased apoptotic population after treatment with increasing concentration of cisplatin. p38-inhibited cells also exhibited significantly increased comet olive tail moment and accumulation of γ-H2 AX, demonstrating increased DNA damage. CONCLUSION: This study demonstrated that p38 MAPK activation may play a role in therapeutic resistance and disease relapse in HNSCC by maintenance of CSCs phenotype.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Cisplatino/farmacologia , Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Histonas/metabolismo , Humanos , Recidiva Local de Neoplasia , Fenótipo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Inflamm Res ; 66(2): 119-128, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27653961

RESUMO

INTRODUCTION: Chronic inflammation can affect the normal cell homeostasis and metabolism by rendering the cells susceptible to genomic instability that may lead to uncontrolled cellular growth and proliferation ensuing tumorigenesis. The causal agents for inflammation may be pathogenic infections like microbial agents ranging from viruses to bacteria. These infections lead to DNA damage or disruption of normal cell metabolism and alter the genome integrity. FINDINGS: In this review, we have highlighted the role of recurrent infections in tumor microenvironment can lead to recruitment of pro-inflammatory cells, cytokines and growth factors to the site of inflammation. This makes the environment rich in cytokines, chemokines, DNA-damaging agents (ROS, RNS) and growth factors which activate DNA damage response pathway and help in sustained proliferation of the tumor cells. In any inflammatory response, the production of cytokines and related signaling molecules is self-regulating and limiting. But in case of neoplastic risk, deregulation of these factors may lead to abnormalities and related pathogenesis. CONCLUSION: The scope of the present review is to explore the probable mechanistic link and factors responsible for chronic inflammation. The relation between chronic inflammation and DNA damage response was further elucidated to understand the mechanism by which it makes the cells susceptible to carcinogenesis.


Assuntos
Inflamação/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Dano ao DNA , Instabilidade Genômica , Humanos , Infecções/imunologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...