Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 458: 140111, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38968716

RESUMO

Anthocyanins, natural pigments known for their vibrant hues and beneficial properties, undergo intricate genetic control. However, red vegetables grown in plant factories frequently exhibit reduced anthocyanin synthesis compared to those in open fields due to factors like inadequate light, temperature, humidity, and nutrient availability. Comprehending these factors is essential for optimizing plant factory environments to enhance anthocyanin synthesis. This review insights the impact of physiological and genetic factors on the production of anthocyanins in red lettuce grown under controlled conditions. Further, we aim to gain a better understanding of the mechanisms involved in both synthesis and degradation of anthocyanins. Moreover, this review summarizes the identified regulators of anthocyanin synthesis in lettuce, addressing the gap in knowledge on controlling anthocyanin production in plant factories, with potential implications for various crops beyond red lettuce.

2.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256820

RESUMO

BACKGROUND: garlic reproduces mainly through clove planting, as sexual reproduction via seeds is uncommon. Growers encounter challenges with pathogens due to the larger size and vegetative nature of seed cloves, as well as the storage conditions conducive to fungal growth. Some Phyto-pathogenic fungi, previously unrecognized as garlic infections, can remain latent within bulb tissues long after harvest. Although outwardly healthy, these infected bulbs may develop rot under specific conditions. AIM OF REVIEW: planting diseased seed cloves can contaminate field soil, with some fungal and bacterial infections persisting for extended periods. The substantial size of seed cloves makes complete eradication of deeply ingrained infections difficult, despite the use of systemic fungicides during the preplanting and postharvest phases. Additionally, viruses, resistant to fungicides, persist in vegetative material. They are prevalent in much of the garlic used for planting, and their host vectors are difficult to eliminate. To address these challenges, tissue-culture techniques are increasingly employed to produce disease-free planting stock. Key scientific concepts of the review: garlic faces a concealed spectrum of diseases that pose a global challenge, encompassing fungal threats like Fusarium's vascular wilt and Alternaria's moldy rot, bacterial blights, and the elusive garlic yellow stripe virus. The struggle to eliminate deeply ingrained infections is exacerbated by the substantial size of seed cloves. Moreover, viruses persist in garlic seeds, spreading through carrier vectors, and remain unaffected by fungicides. This review emphasizes eco-friendly strategies to address these challenges, focusing on preventive measures, biocontrol agents, and plant extracts. Tissue-culture techniques emerge as a promising solution for generating disease-free garlic planting material. The review advocates for ongoing research to ensure sustainable garlic cultivation, recognizing the imperative of safeguarding this culinary staple from an array of fungal and viral threats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...