Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Obesity (Silver Spring) ; 32(6): 1144-1155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616328

RESUMO

OBJECTIVE: Differences in white adipose tissue (WAT) expression of mesoderm-specific transcript (Mest) in C57BL6/J mice fed a high-fat diet (HFD) are concomitant with and predictive for the development of obesity. However, the basis for differences in WAT Mest among mice is unknown. This study investigated whether HFD-inducible WAT Mest, as well as susceptibility to obesity, is transmissible from parents to offspring. METHODS: WAT biopsies of mice fed an HFD for 2 weeks identified parents with low and high WAT Mest for breeding. Obesity phenotypes, WAT Mest, hepatic gene expression, and serum metabolites were determined in offspring fed an HFD for 2 weeks. RESULTS: Offspring showed no heritability of obesity or WAT Mest phenotypes from parents but did show hepatic and serum metabolite changes consistent with their WAT Mest. Importantly, retired male breeders showed WAT Mest expression congruent with initial WAT biopsies even though HFD exposure occurred early in life. CONCLUSIONS: Disparity of HFD-induced Mest in mice is not heritable but, rather, is reestablished during each generation and remains fixed from an early age to adulthood. Short-term HFD feeding reveals variation of WAT Mest expression within isogenic mice that is positively associated with the development of obesity.


Assuntos
Tecido Adiposo Branco , Dieta Hiperlipídica , Fígado , Camundongos Endogâmicos C57BL , Obesidade , Animais , Tecido Adiposo Branco/metabolismo , Camundongos , Masculino , Obesidade/genética , Obesidade/metabolismo , Feminino , Fígado/metabolismo , Fenótipo , Gorduras na Dieta/efeitos adversos
2.
BMC Res Notes ; 16(1): 243, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777771

RESUMO

OBJECTIVE: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry. RESULTS: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 h. Percoll purification from 100 to 200 mg fresh tissue yielded ~ 200-400 ug protein. Mitochondrial bioenergetics evaluated using the Seahorse XFe96 analyzer, a high-throughput respirometry platform, showed optimum mitochondrial input at 500 ng with respiratory control ratio ranging from 3.9 to 7.1 using various substrates demonstrating a high degree of functionality. Furthermore, proteomic analysis of Percoll-enriched mitochondria isolated from skeletal muscle using this method showed significant enrichment of mitochondrial proteins indicating high sample purity. This study established a methodology that ensures sufficient high quality mitochondria for downstream analyses such as mitochondrial bioenergetics and proteomics.


Assuntos
Mitocôndrias , Proteômica , Camundongos , Animais , Centrifugação com Gradiente de Concentração , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias Musculares/metabolismo
3.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503222

RESUMO

Objective: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry. Results: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 hours. Percoll purification from 100-200 mg fresh tissue yielded ∼200-400 ug protein. Mitochondrial bioenergetics evaluated using the Seahorse XFe96 analyzer, a high-throughput respirometry platform, showed optimum mitochondrial input at 500 ng with respiratory control ratio ranging from 3.9-7.1 using various substrates demonstrating a high degree of functionality. Furthermore, proteomic analysis of Percoll-enriched mitochondria isolated from skeletal muscle using this method showed significant enrichment of mitochondrial proteins indicating high sample purity. This study established a methodology that ensures sufficient high quality mitochondria for downstream analyses such as mitochondrial bioenergetics and proteomics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...