Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 99(12): 1658-1670, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355397

RESUMO

A transient increase in trans-endothelial cell permeability in dengue patients leads to vascular leakage and shock syndrome. Here, we analysed the molecular mechanisms that cause permeability changes in human dermal microvascular endothelial cells (HMEC-1) using a direct dengue virus (DENV) infection model or treatment with NS1, a secreted DENV non-structural protein. In HMEC-1 cells, both treatments increase permeability with a concordant increase in the secretion of angiopoietin-2 (Ang-2). There is phosphorylation and loss of the junction protein VE-Cadherin from the inter-endothelial cell junctions and phosphorylation of RhoA. Direct virus infection results in activation of Src by phosphorylation, whereas NS1 treatment alone does not lead to Src activation. Furthermore, treatment with recombinant Ang-1, a physiological antagonist of Ang-2, prevents Ang-2 release, VE-Cadherin phosphorylation and internalization, and phosphorylation of RhoA and Src, resulting in restoration of barrier function. The permeability increase could also be prevented by blocking the Ang1/2 signalling receptor, Tie-2, or using a Rho/ROCK-specific inhibitor. Dasatinib, a Src-family kinase (SFK) inhibitor that inhibits Src phosphorylation, prevents enhanced permeability induced by direct DENV infection whereas in NS1 protein-treated cells its effect is less significant. The results provide important insights on the mechanisms of increased trans-endothelial permeability in DENV infection, and suggest the therapeutic potential of using recombinant Ang-1 or targeting these key molecules to prevent vascular leakage in dengue.


Assuntos
Angiopoietina-1/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Vírus da Dengue/patogenicidade , Células Endoteliais/patologia , Permeabilidade , Proteínas não Estruturais Virais/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional
2.
Artigo em Inglês | MEDLINE | ID: mdl-29733947

RESUMO

Dengue has emerged as a major mosquito-borne disease in the tropics and subtropics. In severe dengue, enhanced microvascular endothelial permeability leads to plasma leakage. Direct dengue virus (DENV) infection in human microvascular endothelial cells (HMEC-1) can enhance trans-endothelial leakage. Using a microarray-based analysis, we identified modulation of key endothelial cell signaling pathways in DENV-infected HMEC-1 cells. One among them was the sphingolipid pathway that regulates vascular barrier function. Sphingosine-1-phosphate receptor 2 (S1PR2) and S1PR5 showed significant up-regulation in the microarray data. In DENV-infected cells, the kinetics of S1PR2 transcript expression and enhanced in vitro trans-endothelial permeability showed a correlation. We also observed an internalization and cytoplasmic translocation of VE-Cadherin, a component of adherens junctions (AJ), upon infection indicating AJ disassembly. Further, inhibition of S1PR2 signaling by a specific pharmacological inhibitor prevented translocation of VE-Cadherin, thus helping AJ maintenance, and abrogated DENV-induced trans-endothelial leakage. Our results show that sphingolipid signaling, especially that involving S1PR2, plays a critical role in vascular leakage in dengue.


Assuntos
Junções Aderentes/metabolismo , Permeabilidade Capilar , Vírus da Dengue/metabolismo , Dengue/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Junções Aderentes/patologia , Junções Aderentes/virologia , Antígenos CD/biossíntese , Caderinas/biossíntese , Linhagem Celular , Dengue/patologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Humanos , Receptores de Lisoesfingolipídeo/biossíntese , Receptores de Esfingosina-1-Fosfato , Regulação para Cima
3.
Infect Genet Evol ; 52: 34-43, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28456663

RESUMO

The role of genetic differences among dengue virus (DENV) in causing increased microvascular permeability is less explored. In the present study, we compared two closely related DENV serotype-2 strains of Cosmopolitan genotype for their in vitro infectivity phenotype and ability to induce trans-endothelial leakage. We found that these laboratory strains differed significantly in infecting human microvascular endothelial cells (HMEC-1) and hepatocytes (Huh7), two major target cells of DENV in in vivo infections. There was a reciprocal correlation in infectivity and vascular leakage induced by these strains, with the less infective strain inducing more trans-endothelial cell leakage in HMEC-1 monolayer upon infection. The cells infected with the strain capable of inducing more permeability were found to secrete more Non-Structural protein (sNS1) into the culture supernatant. A whole genome analysis revealed 37 predicted amino acid changes and changes in the secondary structure of 3' non-translated region between the strains. But none of these changes involved the signal sequence coded by the C-terminal of the Envelope protein and the two glycosylation sites within the NS1 protein critical for its secretion, and the N-terminal NS2A sequence important for surface targeting of NS1. The strain that secreted lower levels of NS1 and caused less leakage had two mutations within the NS1 protein coding region, F103S and T146I that significantly changed amino acid properties. A comparison of the sequences of the two strains with published sequences of various DENV strains known to cause clinically severe dengue identified a number of amino acid changes which could be implicated as possible key genetic differences. Our data supports the earlier observations that the vascular leakage induction potential of DENV strains is linked to the sNS1 levels. The results also indicate that viral genetic determinants, especially the mutations within the NS1 coding region, could affect this critical phenotype of DENV strains.


Assuntos
Vírus da Dengue/fisiologia , Células Endoteliais/virologia , Hepatócitos/virologia , Proteínas não Estruturais Virais/genética , Regiões 3' não Traduzidas , Animais , Permeabilidade Capilar , Linhagem Celular , Vírus da Dengue/genética , Células Endoteliais/citologia , Variação Genética , Genoma Viral , Hepatócitos/citologia , Humanos , Estrutura Secundária de Proteína , Análise de Sequência de RNA , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
4.
Virus Genes ; 45(1): 1-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22729802

RESUMO

In this study, dengue virus (DENV) isolates from a localized, small-scale, non-seasonal dengue outbreak were genetically characterized. The outbreak occurred during the pre-monsoon months (April-May) in a medical college campus in Kerala, South India in 2009 affecting 76 people. Analysis of 39 viral RNA positive serum samples by a serotype specific reverse-transcription polymerase chain reaction identified dengue virus serotype 1 (DENV1) as the causative strain. Formation of a distinct genetic clade was revealed in the initial phylogenetic analysis using nucleotide sequences of a partial (303 bp) Capsid-Pre-membrane protein (C-PrM) coding region of 37 outbreak strains. The sequences of these strains clustered with that of the Genotype III DENV-1 strains from India, and 32 among them formed a single major sub-clade. Whole-genome sequencing (10,693 bp) of two strains (RGCB585/2009 and RGCB592/2009) selected from this major sub-clade, and subsequent phylogenetic analysis using the full-length coding region sequence showed that the sequences grouped with that of the isolates from Thailand (1980), Comoros (1993), Singapore (1993), and Brunei (2005) among the Indo-Pacific isolates. The sequences of the two strains had a nucleotide identity of 97-98 % and an amino acid identity of 98-99 % with these closely related strains. Maximum amino acid similarity was shown with the Singapore 8114/93 isolate (99.6 %). Four mutations-L46M in the capsid, D278N in the NS1, L123I, and L879S in the NS5 protein coding regions-were seen as signature substitutions uniformly in RGCB585/2009 and RGCB592/2009; in another isolate from Kerala (RGCB419/2008) and in the Brunei isolate (DS06-210505). These four isolates also had in common a 21-nucleotide deletion in the hyper-variable region of the 3'-non-translated region. This first report on the complete genome characterization of DENV-1 isolates from India reveals a dengue outbreak caused by a genetically different viral strain. The results point to the possibility of exotic introduction of these circulating viral strains in the region.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Surtos de Doenças , Evolução Molecular , Genoma Viral , Análise de Sequência de DNA , Adulto , Sequência de Aminoácidos , Dengue/diagnóstico , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Feminino , Genótipo , Humanos , Índia/epidemiologia , Funções Verossimilhança , Masculino , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...